
The Boost C++ Libraries

Boris Schäling

September 22, 2014

The Boost C++ Libraries
by Boris Schäling

Edition Second English
Published September 22, 2014
Copyright © 2008 - 2014 Boris Schäling

This work is licensed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 Interna-
tional License. Visit http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en to
view a copy of the full license.

i

http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Contents

I RAII and Memory Management 1

1 Boost.SmartPointers 3

2 Boost.PointerContainer 9

3 Boost.ScopeExit 11

4 Boost.Pool 14

II String Handling 19

5 Boost.StringAlgorithms 21

6 Boost.LexicalCast 26

7 Boost.Format 27

8 Boost.Regex 30

9 Boost.Xpressive 34

10 Boost.Tokenizer 37

11 Boost.Spirit 40

III Containers 52

12 Boost.MultiIndex 54

13 Boost.Bimap 60

14 Boost.Array 63

15 Boost.Unordered 64

16 Boost.CircularBuffer 67

17 Boost.Heap 70

18 Boost.Intrusive 72

19 Boost.MultiArray 77

20 Boost.Container 80

ii

CONTENTS CONTENTS

IV Data Structures 82

21 Boost.Optional 84

22 Boost.Tuple 87

23 Boost.Any 91

24 Boost.Variant 93

25 Boost.PropertyTree 96

26 Boost.DynamicBitset 101

27 Boost.Tribool 102

28 Boost.CompressedPair 104

V Algorithms 105

29 Boost.Algorithm 107

30 Boost.Range 110

31 Boost.Graph 115

VI Communication 130

32 Boost.Asio 132

33 Boost.Interprocess 143

VII Streams and Files 153

34 Boost.IOStreams 155

35 Boost.Filesystem 161

VIII Time 170

36 Boost.DateTime 172

37 Boost.Chrono 182

38 Boost.Timer 186

IX Functional Programming 189

39 Boost.Phoenix 191

40 Boost.Function 196

41 Boost.Bind 198

42 Boost.Ref 201

43 Boost.Lambda 202

iii

CONTENTS CONTENTS

X Parallel Programming 204

44 Boost.Thread 206

45 Boost.Atomic 219

46 Boost.Lockfree 223

47 Boost.MPI 227

XI Generic Programming 238

48 Boost.TypeTraits 240

49 Boost.EnableIf 242

50 Boost.Fusion 244

XII Language Extensions 249

51 Boost.Coroutine 251

52 Boost.Foreach 254

53 Boost.Parameter 255

54 Boost.Conversion 260

XIII Error Handling 262

55 Boost.System 264

56 Boost.Exception 268

XIV Number Handling 273

57 Boost.Integer 275

58 Boost.Accumulators 277

59 Boost.MinMax 280

60 Boost.Random 282

61 Boost.NumericConversion 285

XV Application Libraries 287

62 Boost.Log 289

63 Boost.ProgramOptions 299

64 Boost.Serialization 307

65 Boost.Uuid 322

iv

CONTENTS CONTENTS

XVI Design Patterns 325

66 Boost.Flyweight 327

67 Boost.Signals2 330

68 Boost.MetaStateMachine 339

XVII Other Libraries 347

69 Boost.Utility 349

70 Boost.Assign 353

71 Boost.Swap 355

72 Boost.Operators 356

Index 357

v

Preface

What you will learn
This book is an introduction to the Boost C++ Libraries. The Boost C++ Libraries complement the standard li-
brary. Because the Boost C++ Libraries are based on the standard, they are implemented using state-of-the-art
C++. They are platform independent and are supported on many operating systems, including Windows and
Linux, by a large developer community.
The Boost C++ Libraries enable you to boost your productivity as a C++ developer. For example, you can ben-
efit from smart pointers that help you to write more reliable code or use one of the many libraries to develop
platform-independent network applications. Since the Boost libraries partly anticipate developments in the stan-
dard, you can benefit earlier from tools without having to wait for them to become available in the standard li-
brary.

What you should know
Since the Boost libraries are based on, and extend, the standard, you should know the standard well. You should
understand and be able to use containers, iterators, and algorithms, and ideally you should have heard of concepts
such as RAII, function objects, and predicates. The better you know the standard, the more you will benefit from
the Boost libraries.
In general, you don’t need any knowledge of template meta programming to use the libraries introduced in this
book. The main focus is on libraries that can be learned quickly and easily and that can be immediately of great
benefit in your work as a C++ developer.
Many examples use features that were added to the standard with C++11. For example, the keyword auto is
used to avoid specifying types explicitly. Constructors are called through uniform initialization: variables are
initialized, if possible, with a pair of curly brackets instead of parentheses. Many examples use lambda functions
to make code shorter and more compact. While you can understand many examples without detailed knowledge
of C++11, this book is based on the current standard.

Typographical Conventions
The following text styles are used in this book:

Monospace font A monospace font is used for class names, function names, and keywords — basically for
any C++ code. It is also used for code examples, command line options, and program output. For example:
int i =0;

Monospace bold font A monospace bold font is used for variable names, objects, and user input. For ex-
ample: The variable i is initialized with 0.

Bold Commands are marked in bold. For example: The Boost libraries are compiled with a program called
bjam.

Italic An italic font is used when a new concept is introduced and mentioned for the first time. For example:
RAII is the abbreviation for Resource Acquisition Is Initialization – a concept smart pointers are based on.

Examples
This book contains more than 430 examples. Every example is complete and can be compiled and executed. You
can download all examples from http://theboostcpplibraries.com/examples/ for a quick start.

vi

http://theboostcpplibraries.com/examples/

PREFACE

All examples have been tested with the following compilers: Microsoft Visual Studio Professional 2013 Update
1 (64-bit Windows 7 Professional with Service Pack 1), GCC 4.8.3 (64-bit Cygwin 1.7.30), GCC 4.6.3 (32-bit
Ubuntu 12.04.4), and Clang 3.3 (32-bit Ubuntu 12.04.4).
All of the examples in this book are based on the C++11 standard. During testing, all of the compilers were con-
figured to enable support for C++11. Most examples will work on Windows, Linux, and OS X, but a few are
platform dependent. The exceptions are noted in the example descriptions.
The examples are provided with NO WARRANTY expressed or implied. They are licensed, like this book, under
a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.

vii

Introduction

The Boost C++ Libraries are a collection of modern libraries based on the C++ standard. The source code is re-
leased under the Boost Software License, which allows anyone to use, modify, and distribute the libraries for
free. The libraries are platform independent and support most popular compilers, as well as many that are less
well known.
The Boost community is responsible for developing and publishing the Boost libraries. The community consists
of a relatively large group of C++ developers from around the world coordinated through the web site www.boost.org
as well as several mailing lists. GitHub is used as the code repository. The mission statement of the community
is to develop and collect high-quality libraries that complement the standard library. Libraries that prove of value
and become important for the development of C++ applications stand a good chance of being included in the
standard library at some point.
The Boost community emerged around 1998, when the first version of the standard was released. It has grown
continuously since then and now plays a big role in the standardization of C++. Even though there is no formal
relationship between the Boost community and the standardization committee, some of the developers are ac-
tive in both groups. The current version of the C++ standard, which was approved in 2011, includes libraries that
have their roots in the Boost community.
The Boost libraries are a good choice to increase productivity in C++ projects when your requirements go be-
yond what is available in the standard library. Because the Boost libraries evolve faster than the standard library,
you have earlier access to new developments, and you don’t need to wait until those developments have been
added to a new version of the standard library. Thus, you can benefit from progress made in the evolution of C++
faster, thanks to the Boost libraries.
Due to the excellent reputation of the Boost libraries, knowing them well can be a valuable skill for engineers. It
is not unusual to be asked about the Boost libraries in an interview because developers who know these libraries
are usually also familiar with the latest innovations in C++ and are able to write and understand modern C++
code.

Development Process
The development of the Boost libraries is only possible because individual developers and organizations vig-
orously support them. Because Boost only accepts libraries that solve existing problems, exhibit a convincing
design, are developed using modern C++, and are documented in an understandable way, each Boost library has
a lot of work behind it.
C++ developers can participate in the Boost community and propose new libraries. However, a lot of time and
effort is required to convert an idea into a Boost library. Thus, it is vitally important to discuss requirements and
possible solutions with other developers and potential users on the Boost mailing lists.
Besides new libraries, it is also possible to nominate existing C++ libraries for inclusion into Boost. However,
because the requirements for these libraries are the same as for libraries explicitly developed for Boost, changes
may be required before new libraries are accepted.
Whether or not a library gets accepted into Boost depends on the outcome of the review process. Developers of
libraries can apply for a review, which usually takes about 10 days. During the review, other developers are asked
to rate the library. Based on the number of positive and negative reviews, the review manager decides whether
or not to accept the library into Boost. Since some reviewers may be seeing the proposed new library for the first
time, it is not uncommon for modifications to be required.
If a library is rejected for technical reasons, it is still possible to revise the library and request a new review for
an updated version. However, if the reason a library was rejected is because it does not solve any practical prob-
lem or because it provides an unconvincing solution to an existing problem, there is a good chance that it will be
rejected in another review.

viii

http://www.boost.org/doc/libs/
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/
http://github.com/boostorg

INTRODUCTION INSTALLATION

Because new libraries can be accepted at any time, a new version of the Boost libraries is released every three
months. This makes sure that developers benefit from improvements in the Boost libraries regularly and promptly.

Note

This book is based on the Boost libraries 1.55.0 and 1.56.0. Version 1.55.0 was released
in November 2013. Because the Boost community switched from Subversion to Git at the
end of 2013 and needed time to adapt the release process, the next version, 1.56.0, was
only released in August 2014. This happened two weeks before this book went into pro-
duction. Since 1.55.0 was the latest version for nine months, this book is based on Boost
1.55.0. However, all examples have been tested with Boost 1.56.0, and all examples can
be compiled with either Boost 1.55.0 or 1.56.0.

Installation
The Boost libraries come as source code. While most of the libraries consist solely of header files that can be
used directly, some of the libraries require compilation. In order to make installation as easy as possible, an au-
tomated installation process based on Boost.Build is available. Instead of validating and compiling individual
libraries separately, Boost.Build installs the complete set automatically. Boost.Build can be used with many op-
erating systems and compilers and is able to compile each individual library based on appropriate configuration
files.
To automatically install the Boost libraries with Boost.Build, the command-line program bjam is used. The
Boost libraries ship this program as source code and not as an executable. Therefore, two steps are required to
build and install the Boost libraries. After you download the Boost libraries, change to the Boost directory and
enter the following commands on the command line:

1. Enter bootstrap on Windows and ./bootstrap.sh on other platforms, such as Linux, to compile
bjam. The script automatically searches for a C compiler to build bjam.

2. Then, enter bjam on Windows and ./bjam on other platforms to start installing the Boost libraries.

You use bootstrap only once to build bjam. However, you might need to use bjam more often because bjam
supports command-line options to build the Boost libraries in different ways. If you start bjam without any command-
line options, a default configuration will be used. Because the default configuration is not always appropriate,
you should know the most important command-line options:

• The command-line options stage and install specify whether the Boost libraries are installed in a sub-
directory called stage or are made available system wide. The meaning of system wide depends on the
operating system. On Windows, the target directory is C:\Boost; on Linux it is /usr/local. The
target directory can also be specified with the --prefix option. Starting bjam without command-line
options always means stage.

• If bjam is called without any command-line options, it will search for a suitable C++ compiler. A specific
compiler can be selected using the --toolset option. To select Visual C++ 2013 on Windows, call bjam
with --toolset=msvc-12.0. To select the GCC compiler on Linux, use --toolset=gcc.

• The command-line option --build-type determines which build types of the libraries are created. By
default, this option is set to minimal, meaning that only release builds are created. This may become an
issue for developers who want to create debug builds of their projects with Visual C++ or GCC. Because
these compilers automatically try to link against the debug builds of the Boost libraries, an error message
will be displayed. In this case the option --build-type should be set to complete to generate both de-
bug and release builds of the Boost libraries. This can take quite some time, which is why complete is not
the default.

• Boost libraries that have to be compiled are made available on Windows with file names that contain ver-
sion numbers and various tokens. They make it possible, for example, to tell whether a library has been

ix

INTRODUCTION OVERVIEW

built as a debug or release variant. libboost_atomic-vc120-mt-gd-1_56 is such a file name.
This library was built with Visual C++ 2013. It belongs to the Boost libraries 1.56.0. It is a debug variant
and can be used in multithreaded programs. With the command-line option --layout, bjam can be told to
generate other file names. For example, if you set it to system, the same file would be called libboost_
atomic. On Linux, system is the default setting. If you want file names on Linux to be the same as
those generated on Windows by default, set --layout to versioned.

To create both debug and release builds of the Boost libraries with Visual C++ 2013 and install them in the direc-
tory D:\Boost, enter the following command:

bjam --toolset=msvc-12.0 --build-type=complete --prefix=D:\Boost install

To build them on Linux and install them in the default directory, the command would be:

bjam --toolset=gcc --build-type=complete install

There are many other command-line options that you can use to specify in detail how to compile the Boost li-
braries. Have a look at the following command:

bjam --toolset=msvc-12.0 debug release link=static runtime-link=shared ←↩
install

The debug and release options cause both debug and release builds to be generated. link=static only cre-
ates static libraries. runtime-link=shared specifies that the C++ runtime library is dynamically linked, which
is the default setting for projects in Visual C++ 2013.

Overview
There are more than a hundred Boost libraries. This book discusses the following libraries in detail:

Table 1: Covered libraries

Boost library Standard Short description

Boost.Accumulators
Boost.Accumulators provides accumulators to which
numbers can be added to get, for example, the mean or
the standard deviation.

Boost.Algorithm Boost.Algorithm provides various algorithms that
complement the algorithms from the standard library.

Boost.Any Boost.Any provides a type called boost::any, which
can store objects of arbitrary types.

Boost.Array TR1, C++11 Boost.Array makes it possible to treat C++ arrays like
containers from the standard library.

Boost.Asio
Boost.Asio allows you to develop applications, such
as network applications, that process data asyn-
chronously.

Boost.Assign
Boost.Assign provides helper functions to add multiple
values to a container without having to call member
functions like push_back() repeatedly.

Boost.Atomic C++11

Boost.Atomic defines the class boost::atomic to
perform atomic operations on integral values. The
library is used in multithreaded applications that need
to share integral values between threads.

Boost.Bimap

Boost.Bimap provides a class called boost::bimap,
which is similar to std::map. The crucial difference
is that boost::bimap allows you to search for both
key and value.

Boost.Bind TR1, C++11
Boost.Bind is an adapter for passing functions as
template parameters, even if the function signature is
incompatible with the expected template parameter.

Boost.Chrono C++11 Boost.Chrono defines numerous clocks to get values
such as the current time or the CPU time.

x

INTRODUCTION OVERVIEW

Table 1: (continued)

Boost library Standard Short description

Boost.CircularBuffer Boost.CircularBuffer offers a circular container with a
constant memory size.

Boost.CompressedPair

Boost.CompressedPair provides the data structure
boost::compressed_pair, which is similar to
std::pair but needs less memory when template
parameters are empty classes.

Boost.Container
Boost.Container defines all of the containers from
the standard library, plus additional containers like
boost::container::slist.

Boost.Conversion Boost.Conversion provides two cast operators to
perform downcasts and cross casts.

Boost.Coroutine
Boost.Coroutine makes it possible to use coroutines in
C++. Coroutines are often used in other programming
languages using the keyword yield.

Boost.DateTime Boost.DateTime can be used to process, read, and
write date and time values.

Boost.DynamicBitset Boost.DynamicBitset provides a structure similar to
std::bitset, except that it is configured at run time.

Boost.EnableIf C++11 Boost.EnableIf makes it possible to overload functions
based on type properties.

Boost.Exception
Boost.Exception allows you to add additional data to
thrown exceptions so you can provide more data to
catch handlers.

Boost.Filesystem Boost.Filesystem provides a class to process paths and
several functions to access files and directories.

Boost.Flyweight Boost.Flyweight makes it easy to use the design pat-
tern of the same name.

Boost.Foreach Boost.Foreach provides a macro that is similar to the
range-based for loop introduced with C++11.

Boost.Format
Boost.Format replaces the function std::printf()
with a type-safe and extensible class, boost::
format.

Boost.Function TR1, C++11 Boost.Function simplifies the definition of function
pointers.

Boost.Fusion
Boost.Fusion allows you to create heterogeneous con-
tainers – containers that can store elements of different
types.

Boost.Graph
Boost.Graph provides algorithms for operations such
as finding the shortest path between two points in a
graph.

Boost.Heap Boost.Heap provides many variants of the class std::
priority_queue from the standard library.

Boost.Integer C++11
Boost.Integer defines specialized types for integers
that have been available to C developers since the
standard C99 was released in 1999.

Boost.Interprocess Boost.Interprocess uses shared memory to help appli-
cations communicate quickly and efficiently.

Boost.Intrusive

Boost.Intrusive defines containers that provide higher
performance than containers from the standard li-
brary, but which also have special requirements for the
objects they contain.

Boost.IOStreams
Boost.IOStreams provides streams and filters. Filters
can be connected with a stream to, for example, write
compressed data.

Boost.Lambda Boost.Lambda allows you to define anonymous func-
tions without C++11.

xi

INTRODUCTION OVERVIEW

Table 1: (continued)

Boost library Standard Short description

Boost.LexicalCast Boost.LexicalCast provides a cast operator to convert
numbers to a string and vice versa.

Boost.Lockfree Boost.Lockfree defines thread-safe containers that
multiple threads may access concurrently.

Boost.Log Boost.Log is the logging library in Boost.

Boost.MetaStateMachine Boost.MetaStateMachine makes it possible to develop
state machines as they are defined in the UML.

Boost.MinMax C++11
Boost.MinMax provides an algorithm that can find
the smallest and largest values in a container without
calling std::min() and std::max().

Boost.MPI Boost.MPI provides a C++ interface for the MPI
standard.

Boost.MultiArray Boost.MultiArray simplifies working with multidimen-
sional arrays.

Boost.MultiIndex
Boost.MultiIndex allows you to define new containers
that can support multiple interfaces, such as the ones
from std::vector and std::map.

Boost.NumericConversion
Boost.NumericConversion provides a cast operator
to safely convert between values of different numeric
types without generating an overflow condition.

Boost.Operators
Boost.Operators allows many operators to be auto-
matically overloaded with the help of already defined
operators.

Boost.Optional

Boost.Optional provides a class to denote optional
return values. Functions that can’t always return a
result don’t need to use special values like -1 or a null
pointer anymore.

Boost.Parameter
Boost.Parameter lets you pass parameters to functions
as name/value pairs like you can with programming
languages like Python.

Boost.Phoenix

Boost.Phoenix makes it possible to create lambda
functions without C++11. Unlike the C++11 lambda
functions, the lambda functions from this library can
be generic.

Boost.PointerContainer Boost.PointerContainer provides containers that are
optimized for managing dynamically allocated objects.

Boost.Pool

Boost.Pool is a library to manage memory. For ex-
ample, Boost.Pool defines an allocator optimized for
situations where you need to create and destroy many
objects, all of the same size.

Boost.ProgramOptions Boost.ProgramOptions allows an application to define
and evaluate command-line options.

Boost.PropertyTree

Boost.PropertyTree provides a container that stores
key/value pairs in a tree-like structure. This makes it
easier to manage the kind of configuration data used
by many applications.

Boost.Random TR1, C++11 Boost.Random provides random number generators.

Boost.Range

Boost.Range introduces a concept called range that
replaces the iterators usually received from containers
with begin() and end(). Ranges makes it so you
don’t have to pass a pair of iterators to algorithms.

Boost.Ref TR1, C++11
Boost.Ref provides adapters that allow you to pass
references to objects that can’t be copied to functions
that pass parameters by copy.

Boost.Regex TR1, C++11 Boost.Regex provides functions to search strings with
regular expressions.

xii

INTRODUCTION OVERVIEW

Table 1: (continued)

Boost library Standard Short description

Boost.ScopeExit

Boost.ScopeExit provides macros to define code
blocks that are executed when the current scope ends.
That way, resources can be released at the end of the
current scope without having to use smart pointers or
other classes.

Boost.Serialization Boost.Serialization allows you to serialize objects and
store them in files to be reloaded later.

Boost.Signals2

Boost.Signals2 is a framework for event handling
based on the signal/slot concept, which associates
functions with signals and automatically calls the
appropriate function(s) when a signal is triggered.

Boost.SmartPointers TR1, C++11 (partly) Boost.SmartPointers provides a set of smart pointers
that simplify managing dynamically allocated objects.

Boost.Spirit
Boost.Spirit allows you to generate parsers using a
syntax similar to EBNF (Extended Backus-Naur-
Form).

Boost.StringAlgorithms Boost.StringAlgorithms provides many stand-alone
functions to facilitate string handling.

Boost.Swap
Boost.Swap defines boost::swap(), which has the
same function as std::swap(), but is optimized for
many Boost libraries.

Boost.System C++11 Boost.System offers a framework to process system-
and application-specific error codes.

Boost.Thread C++11 Boost.Thread allows you to develop multithreaded
applications.

Boost.Timer Boost.Timer defines clocks that let you measure code
performance.

Boost.Tokenizer Boost.Tokenizer allows you to iterate over tokens in a
string.

Boost.Tribool Boost.Tribool provides a type that, unlike bool, distin-
guishes three, rather than two, states.

Boost.Tuple TR1, C++11
Boost.Tuple provides a generalized version of std::
pair that can store an arbitrary number of values, not
just two.

Boost.TypeTraits TR1, C++11 Boost.TypeTraits provides functions to check proper-
ties of types.

Boost.Unordered TR1, C++11
Boost.Unordered provides two hash contain-
ers: boost::unordered_set and boost::
unordered_map.

Boost.Utility
Boost.Utility is a collection of various tools that are
too small to have their own libraries and don’t fit in
another library.

Boost.Uuid Boost.Uuid defines the class boost::uuids::uuid
and generators to create UUIDs.

Boost.Variant Boost.Variant permits the definition of types that, like
union, group multiple types.

Boost.Xpressive
Boost.Xpressive makes it possible to search strings
with regular expressions. Regular expressions are
encoded as C++ code rather than as strings.

Presumably, the next version of the standard will be C++14. There are many project groups working on various
topics for C++14. These activities are known as Technical Specifications (TS). For example, the File System TS
works on an extension of the standard based on Boost.Filesystem to access files and directories. You can find
more information on C++14 and the standardization of C++ at isocpp.org.

xiii

http://isocpp.org

Part I

RAII and Memory Management

1

RAII stands for Resource Acquisition Is Initialization. The idea behind this idiom: for any resource acquired, an
object should be initialized that will own that resource and close it in the destructor. Smart pointers are a promi-
nent example of RAII. They help avoid memory leaks. The following libraries provide smart pointers and other
tools to help you manage memory more easily.

• Boost.SmartPointers defines smart pointers. Some of them are provided by the C++11 standard library.
Others are only available in Boost.

• Boost.PointerContainer defines containers to store dynamically allocated objects – objects that are created
with new. Because the containers from this library destroy objects with delete in the destructor, no smart
pointers need to be used.

• Boost.ScopeExit makes it possible to use the RAII idiom for any resources. While Boost.SmartPointers
and Boost.PointerContainer can only be used with pointers to dynamically allocated objects, with Boost.ScopeExit
no resource-specific classes need to be used.

• Boost.Pool has nothing to do with RAII, but it has a lot to do with memory management. This library de-
fines numerous classes to provide memory to your program faster.

2

Chapter 1

Boost.SmartPointers

The library Boost.SmartPointers provides various smart pointers. They help you manage dynamically allocated
objects, which are anchored in smart pointers that release the dynamically allocated objects in the destructor. Be-
cause destructors are executed when the scope of smart pointers ends, releasing dynamically objects is guaran-
teed. There can’t be a memory leak if, for example, you forget to call delete.
The standard library has included the smart pointer std::auto_ptr since C++98, but since C++11, std::
auto_ptr has been deprecated. With C++11, new and better smart pointers were introduced in the standard li-
brary. std::shared_ptr and std::weak_ptr originate from Boost.SmartPointers and are called boost::
shared_ptr and boost::weak_ptr in this library. There is no counterpart to std::unique_ptr. However,
Boost.SmartPointers provides four additional smart pointers – boost::scoped_ptr, boost::scoped_array,
boost::shared_array, and boost::intrusive_ptr – which are not in the standard library.

1.1 Sole Ownership
boost::scoped_ptr is a smart pointer that is the sole owner of a dynamically allocated object. boost::sco
ped_ptr cannot be copied or moved. This smart pointer is defined in the header file boost/scoped_ptr.
hpp.
A smart pointer of type boost::scoped_ptr can’t transfer ownership of an object. Once initialized with an ad-
dress, the dynamically allocated object is released when the destructor is executed or when the member function
reset() is called.
Example 1.1 uses a smart pointer p with the type boost::scoped_ptr<int>. p is initialized with a pointer to a dy-
namically allocated object that stores the number 1. Via operator*, p is de-referenced and 1 written to standard
output.
Example 1.1 Using boost::scoped_ptr

#include <boost/scoped_ptr.hpp>
#include <iostream>

int main()
{

boost::scoped_ptr<int> p{new int{1}};
std::cout << *p << '\n';
p.reset(new int{2});
std::cout << *p.get() << '\n';
p.reset();
std::cout << std::boolalpha << static_cast<bool>(p) << '\n';

}

With reset() a new address can be stored in the smart pointer. That way the example passes the address of a
newly allocated int object containing the number 2 to p. With the call to reset(), the currently referenced ob-
ject in p is automatically destroyed.
get() returns the address of the object anchored in the smart pointer. The example de-references the address
returned by get() to write 2 to standard output.
boost::scoped_ptr overloads the operator operator bool. operator bool returns true if the smart

3

http://www.boost.org/libs/smart_ptr

CHAPTER 1. BOOST.SMARTPOINTERS 1.2. SHARED OWNERSHIP

pointer contains a reference to an object – that is, if it isn’t empty. The example writes false to standard out-
put because p has been reset with a call to reset().
The destructor of boost::scoped_ptr releases the referenced object with delete. That’s why boost::sco
ped_ptr must not be initialized with the address of a dynamically allocated array, which would have to be re-
leased with delete[]. For arrays, Boost.SmartPointers provides the class boost::scoped_array.
Example 1.2 Using boost::scoped_array

#include <boost/scoped_array.hpp>

int main()
{

boost::scoped_array<int> p{new int[2]};
*p.get() = 1;
p[1] = 2;
p.reset(new int[3]);

}

The smart pointer boost::scoped_array is used like boost::scoped_ptr. The crucial difference is that the
destructor of boost::scoped_array uses the operator delete[] to release the contained object. Because this
operator only applies to arrays, a boost::scoped_array must be initialized with the address of a dynamically
allocated array.
boost::scoped_array is defined in boost/scoped_array.hpp.
boost::scoped_array provides overloads for operator[] and operator bool. Using operator[], a
specific element of the array can be accessed. Thus, an object of type boost::scoped_array behaves like the
array it owns. Example 1.2 saves the number 2 as the second element in the array referred to by p.
Like boost::scoped_ptr, the member functions get() and reset() are provided to retrieve and reinitialize
the address of the contained object.

1.2 Shared Ownership
The smart pointer boost::shared_ptr is similar to boost::scoped_ptr. The key difference is that boost:
:shared_ptr is not necessarily the exclusive owner of an object. Ownership can be shared with other smart
pointers of type boost::shared_ptr. In such a case, the shared object is not released until the last copy of
the shared pointer referencing the object is destroyed. Because boost::shared_ptr can share ownership, the
smart pointer can be copied, which isn’t possible with boost::scoped_ptr.
boost::shared_ptr is defined in the header file boost/shared_ptr.hpp.
Example 1.3 Using boost::shared_ptr

#include <boost/shared_ptr.hpp>
#include <iostream>

int main()
{

boost::shared_ptr<int> p1{new int{1}};
std::cout << *p1 << '\n';
boost::shared_ptr<int> p2{p1};
p1.reset(new int{2});
std::cout << *p1.get() << '\n';
p1.reset();
std::cout << std::boolalpha << static_cast<bool>(p2) << '\n';

}

Example 1.3 uses two smart pointers, p1 and p2, of the type boost::shared_ptr. p2 is initialized with p1
which means both smart pointers share ownership of the same int object. When reset() is called on p1, a new
int object is anchored in p1. This doesn’t mean that the existing int object is destroyed. Since it is also anchored
in p2, it continues to exist. After the call to reset(), p1 is the sole owner of the int object with the number 2
and p2 the sole owner of the int object with the number 1.
boost::shared_ptr uses a reference counter internally. Only when boost::shared_ptr detects that the last
copy of the smart pointer has been destroyed is the contained object released with delete.

4

CHAPTER 1. BOOST.SMARTPOINTERS 1.2. SHARED OWNERSHIP

Like boost::scoped_ptr, boost::shared_ptr overloads operator bool(), operator*(), and oper
ator->(). The member functions get() and reset() are provided to retrieve the currently stored address or
store a new one.
As a second parameter, a deleter can be passed to the constructor of boost::shared_ptr. The deleter must be
a function or function object that accepts as its sole parameter a pointer of the type boost::shared_ptr was
instantiated with. The deleter is called in the destructor instead of delete. This makes it possible to manage
resources other than dynamically allocated objects in a boost::shared_ptr.
Example 1.4 boost::shared_ptr with a user-defined deleter

#include <boost/shared_ptr.hpp>
#include <Windows.h>

int main()
{

boost::shared_ptr<void> handle(OpenProcess(PROCESS_SET_INFORMATION, FALSE,
GetCurrentProcessId()), CloseHandle);

}

In Example 1.4 boost::shared_ptr is instantiated with void. The first parameter passed to the constructor is
the return value from OpenProcess(). OpenProcess() is a Windows function to get a handle to a process. In
the example, OpenProcess() returns a handle to the current process – to the example itself.
Windows uses handles to refer to resources. Once a resource isn’t used anymore, the handle must be closed with
CloseHandle(). The only parameter expected by CloseHandle() is the handle to close. In the example, Clo
seHandle() is passed as a second parameter to the constructor of boost::shared_ptr. CloseHandle() is
the deleter for handle. When handle is destroyed at the end of main(), the destructor calls CloseHandle()
to close the handle that was passed as a first parameter to the constructor.

Note

Example 1.4 only works because a Windows handle is defined as void*. If OpenProcess()
didn’t return a value of type void* and if CloseHandle() didn’t expect a parameter of type
void*, it wouldn’t be possible to use boost::shared_ptr in this example. The deleter
does not make boost::shared_ptr a silver bullet to manage arbitrary resources.

Example 1.5 Using boost::make_shared

#include <boost/make_shared.hpp>
#include <typeinfo>
#include <iostream>

int main()
{

auto p1 = boost::make_shared<int>(1);
std::cout << typeid(p1).name() << '\n';
auto p2 = boost::make_shared<int[]>(10);
std::cout << typeid(p2).name() << '\n';

}

Boost.SmartPointers provides a helper function boost::make_shared() in boost/make_shared.hpp.
With boost::make_shared() you can create a smart pointer of type boost::shared_ptr without having to
calling the constructor of boost::shared_ptr yourself.
The advantage of boost::make_shared() is that the memory for the object that has to be allocated dynami-
cally and the memory for the reference counter used by the smart pointer internally can be reserved in one chunk.
Using boost::make_shared() is more efficient than calling new to create a dynamically allocated object and
calling new again in the constructor of boost::shared_ptr to allocate memory for the reference counter.
You can use boost::make_shared() for arrays, too. With the second call to boost::make_shared() in
Example 1.5, an int array with ten elements is anchored in p2.
boost::shared_ptr has only supported arrays since Boost 1.53.0. boost::shared_array provides a smart
pointer that is analogous to boost::shared_ptr in the same way that boost::scoped_array is analogous to

5

CHAPTER 1. BOOST.SMARTPOINTERS 1.2. SHARED OWNERSHIP

boost::scoped_ptr. When built with Visual C++ 2013 and Boost 1.53.0 or newer, Example 1.5 prints class
boost::shared_ptr<int [0]> for p2.
Since Boost 1.53.0, boost::shared_ptr supports single objects and arrays and detects whether it has to re-
lease resources with delete or delete[]. Because boost::shared_ptr also overloads operator[] (since
Boost 1.53.0), this smart pointer is an alternative for boost::shared_array.
boost::shared_array complements boost::shared_ptr: Since boost::shared_array calls delete[]
in the destructor, this smart pointer can be used for arrays. For versions older than Boost 1.53.0, boost::share
d_array had to be used for arrays because boost::shared_ptr didn’t support arrays.
boost::shared_array is defined in boost/shared_array.hpp.
Example 1.6 Using boost::shared_array

#include <boost/shared_array.hpp>
#include <iostream>

int main()
{

boost::shared_array<int> p1{new int[1]};
{

boost::shared_array<int> p2{p1};
p2[0] = 1;

}
std::cout << p1[0] << '\n';

}

In Example 1.6, the smart pointers p1 and p2 share ownership of the dynamically allocated int array. When the
array in p2 is accessed with operator[] to store the number 1, the same array is accessed with p1. Thus, the
example writes 1 to standard output.
Like boost::shared_ptr, boost::shared_array uses a reference counter. The dynamically allocated ar-
ray is not released when p2 is destroyed because p1 still contains a reference to that array. The array is only de-
stroyed at the end of main() when the scope ends for p1.
boost::shared_array also provides the member functions get() and reset(). Furthermore, it overloads
the operator operator bool.
Example 1.7 boost::shared_ptr with BOOST_SP_USE_QUICK_ALLOCATOR

#define BOOST_SP_USE_QUICK_ALLOCATOR
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <ctime>

int main()
{

boost::shared_ptr<int> p;
std::time_t then = std::time(nullptr);
for (int i = 0; i < 1000000; ++i)

p.reset(new int{i});
std::time_t now = std::time(nullptr);
std::cout << now - then << '\n';

}

It can make sense to prefer a smart pointer like boost::shared_ptr over the ones from the standard library.
Boost.SmartPointers supports macros to optimize the behavior of the smart pointers. Example 1.7 uses the macro
BOOST_SP_USE_QUICK_ALLOCATOR to activate an allocator shipped with Boost.SmartPointers. This allocator
manages memory chunks to reduce the number of calls to new and delete for reference counters. The example
calls std::time() to measure the time before and after the loop. While the time it takes to execute the loop
depends on the computer, the example may run faster with BOOST_SP_USE_QUICK_ALLOCATOR than without.
The documentation for Boost.SmartPointers doesn’t mention BOOST_SP_USE_QUICK_ALLOCATOR. Thus, you
should profile your program and compare the results you get with and without BOOST_SP_USE_QUICK_ALLOCA
TOR.

6

CHAPTER 1. BOOST.SMARTPOINTERS 1.3. SPECIAL SMART POINTERS

Tip

In addition to BOOST_SP_USE_QUICK_ALLOCATOR, Boost.SmartPointers supports macros
like BOOST_SP_ENABLE_DEBUG_HOOKS. The names of the macros start with BOOST_SP_
which makes it easy to search for them in the header files to get an overview on the avail-
able macros.

1.3 Special Smart Pointers
Every smart pointer introduced so far can be used individually in different scenarios. However, boost::wea
k_ptr only makes sense if used in conjunction with boost::shared_ptr. boost::weak_ptr is defined in
boost/weak_ptr.hpp.
Example 1.8 Using boost::weak_ptr

#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <thread>
#include <functional>
#include <iostream>

void reset(boost::shared_ptr<int> &sh)
{

sh.reset();
}

void print(boost::weak_ptr<int> &w)
{

boost::shared_ptr<int> sh = w.lock();
if (sh)

std::cout << *sh << '\n';
}

int main()
{

boost::shared_ptr<int> sh{new int{99}};
boost::weak_ptr<int> w{sh};
std::thread t1{reset, std::ref(sh)};
std::thread t2{print, std::ref(w)};
t1.join();
t2.join();

}

boost::weak_ptr must be initialized with a boost::shared_ptr. Its most important member function is
lock(). lock() returns a boost::shared_ptr that shares ownership with the shared pointer used to initialize
the weak pointer. In case the shared pointer is empty, the returned pointer will be empty as well.
boost::weak_ptr makes sense whenever a function is expected to work with an object managed by a shared
pointer, but the lifetime of the object does not depend on the function itself. The function can only use the object
as long as it is owned by at least one shared pointer somewhere else in the program. In case the shared pointer is
reset, the object cannot be kept alive because of an additional shared pointer inside the corresponding function.
Example 1.8 creates two threads in main(). The first thread executes the function reset(), which receives a
reference to a shared pointer. The second thread executes the function print(), which receives a reference to a
weak pointer. This weak pointer has been previously initialized with the shared pointer.
Once the program is launched, both reset() and print() are executed at the same time. However, the order of
execution cannot be predicted. This leads to the potential problem of reset() destroying the object while it is
being accessed by print().
The weak pointer solves this issue as follows: invoking lock() returns a shared pointer that points to a valid
object if one exists at the time of the call. If not, the shared pointer is set to 0 and is equivalent to a null pointer.

7

CHAPTER 1. BOOST.SMARTPOINTERS 1.3. SPECIAL SMART POINTERS

boost::weak_ptr itself does not have any impact on the lifetime of an object. To safely access the object
within the print() function, lock() returns a boost::shared_ptr. This guarantees that even if a different
thread attempts to release the object, it will continue to exist thanks to the returned shared pointer.
Example 1.9 Using boost::intrusive_ptr

#include <boost/intrusive_ptr.hpp>
#include <atlbase.h>
#include <iostream>

void intrusive_ptr_add_ref(IDispatch *p) { p->AddRef(); }
void intrusive_ptr_release(IDispatch *p) { p->Release(); }

void check_windows_folder()
{

CLSID clsid;
CLSIDFromProgID(CComBSTR{"Scripting.FileSystemObject"}, &clsid);
void *p;
CoCreateInstance(clsid, 0, CLSCTX_INPROC_SERVER, __uuidof(IDispatch), &p);
boost::intrusive_ptr<IDispatch> disp{static_cast<IDispatch*>(p), false};
CComDispatchDriver dd{disp.get()};
CComVariant arg{"C:\\Windows"};
CComVariant ret{false};
dd.Invoke1(CComBSTR{"FolderExists"}, &arg, &ret);
std::cout << std::boolalpha << (ret.boolVal != 0) << '\n';

}

int main()
{

CoInitialize(0);
check_windows_folder();
CoUninitialize();

}

In general, boost::intrusive_ptr works the same as boost::shared_ptr. However, while boost::shar
ed_ptr keeps track of the number of shared pointers referencing a particular object, the developer has to do this
when using boost::intrusive_ptr. This can make sense if other classes already keep track of references.
boost::intrusive_ptr is defined in boost/intrusive_ptr.hpp.
Example 1.9 uses functions provided by COM and, thus, can only be built and run on Windows. COM objects
are a good example for boost::intrusive_ptr because they track the number of pointers referencing them.
The internal reference counter can be incremented or decremented by 1 with the member functions AddRef()
and Release(). Once the counter reaches 0, the COM object is automatically destroyed.
The two member functions AddRef() and Release() are called from intrusive_ptr_add_ref() and intr
usive_ptr_release(). Boost.Intrusive expects a developer to define these two functions, which are automat-
ically called whenever a reference counter must be incremented or decremented. The parameter passed to these
functions is a pointer to the type that was used to instantiate the class template boost::intrusive_ptr.
The COM object used in this example is called FileSystemObject and is available on Windows by default. It
provides access to the underlying file system to, for example, check whether a given directory exists. In Exam-
ple 1.9, the existence of a directory called C:\Windows is checked. How that works internally depends solely
on COM and is irrelevant to the functionality of boost::intrusive_ptr. The crucial point is that once the in-
trusive pointer disp goes out of scope at the end of check_windows_folder(), the function intrusive_ptr
_release() is called automatically. This in turn will decrement the internal reference counter of FileSystemOb-
ject to 0 and destroy the object.
The parameter false passed to the constructor of boost::intrusive_ptr prevents intrusive_ptr_add_
ref() from being called. When a COM object is created with CoCreateInstance(), the counter is already set
to 1. Therefore, it must not be incremented with intrusive_ptr_add_ref().

8

Chapter 2

Boost.PointerContainer

The library Boost.PointerContainer provides containers specialized to manage dynamically allocated objects. For
example, with C++11 you can use std::vector<std::unique_ptr<int>> to create such a container. However, the
containers from Boost.PointerContainer can provide some extra comfort.
Example 2.1 Using boost::ptr_vector

#include <boost/ptr_container/ptr_vector.hpp>
#include <iostream>

int main()
{

boost::ptr_vector<int> v;
v.push_back(new int{1});
v.push_back(new int{2});
std::cout << v.back() << '\n';

}

The class boost::ptr_vector basically works like std::vector<std::unique_ptr<int>> (see Example 2.1).
However, because boost::ptr_vector knows that it stores dynamically allocated objects, member functions
like back() return a reference to a dynamically allocated object and not a pointer. Thus, the example writes 2 to
standard output.
Example 2.2 illustrates another reason to use a specialized container. The example stores dynamically allocated
variables of type int in a boost::ptr_set and a std::set. std::set is used together with std::unique_
ptr.
Example 2.2 boost::ptr_set with intuitively correct order

#include <boost/ptr_container/ptr_set.hpp>
#include <boost/ptr_container/indirect_fun.hpp>
#include <set>
#include <memory>
#include <functional>
#include <iostream>

int main()
{

boost::ptr_set<int> s;
s.insert(new int{2});
s.insert(new int{1});
std::cout << *s.begin() << '\n';

std::set<std::unique_ptr<int>, boost::indirect_fun<std::less<int>>> v;
v.insert(std::unique_ptr<int>(new int{2}));
v.insert(std::unique_ptr<int>(new int{1}));
std::cout << **v.begin() << '\n';

}

With boost::ptr_set, the order of the elements depends on the int values. std::set compares pointers of
type std::unique_ptr and not the variables the pointers refer to. To make std::set sort the elements based

9

http://www.boost.org/libs/ptr_container

CHAPTER 2. BOOST.POINTERCONTAINER

on int values, the container must be told how to compare elements. In Example 2.2, boost::indirect_fun
(provided by Boost.PointerContainer) is used. With boost::indirect_fun, std::set is told that elements
shouldn’t be sorted based on pointers of type std::unique_ptr, but instead based on the int values the pointers
refer to. That’s why the example displays 1 twice.
Besides boost::ptr_vector and boost::ptr_set, there are other containers available for managing dy-
namically allocated objects. Examples of these additional containers include boost::ptr_deque, boost::
ptr_list, boost::ptr_map, boost::ptr_unordered_set, and boost::ptr_unordered_map. These
containers correspond to the well-known containers from the standard library.
Example 2.3 Inserters for containers from Boost.PointerContainer

#include <boost/ptr_container/ptr_vector.hpp>
#include <boost/ptr_container/ptr_inserter.hpp>
#include <array>
#include <algorithm>
#include <iostream>

int main()
{

boost::ptr_vector<int> v;
std::array<int, 3> a{{0, 1, 2}};
std::copy(a.begin(), a.end(), boost::ptr_container::ptr_back_inserter(v));
std::cout << v.size() << '\n';

}

Boost.PointerContainer provides inserters for its containers. They are defined in the namespace boost::ptr_c
ontainer. To have access to the inserters, you must include the header file boost/ptr_container/ptr_
inserter.hpp.
Example 2.3 uses the function boost::ptr_container::ptr_back_inserter(), which creates an inserter
of type boost::ptr_container::ptr_back_insert_iterator. This inserter is passed to std::copy()
to copy all numbers from the array a to the vector v. Because v is a container of type boost::ptr_vector,
which expects addresses of dynamically allocated int objects, the inserter creates copies with new on the heap
and adds the addresses to the container.
In addition to boost::ptr_container::ptr_back_inserter(), Boost.PointerContainer provides the func-
tions boost::ptr_container::ptr_front_inserter() and boost::ptr_container::ptr_inser
ter() to create corresponding inserters.

10

Chapter 3

Boost.ScopeExit

The library Boost.ScopeExit makes it possible to use RAII without resource-specific classes.
Boost.ScopeExit provides the macro BOOST_SCOPE_EXIT, which can be used to define something that looks like
a local function but doesn’t have a name. However, it does have a parameter list in parentheses and a block in
braces.
The header file boost/scoped_exit.hpp must be included to use BOOST_SCOPE_EXIT.
Example 3.1 Using BOOST_SCOPE_EXIT

#include <boost/scope_exit.hpp>
#include <iostream>

int *foo()
{

int *i = new int{10};
BOOST_SCOPE_EXIT(&i)
{

delete i;
i = 0;

} BOOST_SCOPE_EXIT_END
std::cout << *i << '\n';
return i;

}

int main()
{

int *j = foo();
std::cout << j << '\n';

}

The parameter list for the macro contains variables from the outer scope which should be accessible in the block.
The variables are passed by copy. To pass a variable by reference, it must be prefixed with an ampersand, as in
Example 3.1.
Code in the block can only access variables from the outer scope if the variables are in the parameter list.
BOOST_SCOPE_EXIT is used to define a block that will be executed when the scope the block is defined in ends.
In Example 3.1 the block defined with BOOST_SCOPE_EXIT is executed just before foo() returns.
BOOST_SCOPE_EXIT can be used to benefit from RAII without having to use resource-specific classes. foo()
uses new to create an int variable. In order to free the variable, a block that calls delete is defined with BOOST_
SCOPE_EXIT. This block is guaranteed to be executed even if, for example, the function returns early because of
an exception. In Example 3.1, BOOST_SCOPE_EXIT is as good as a smart pointer.
Please note that the variable i is set to 0 at the end of the block defined by BOOST_SCOPE_EXIT. i is then re-
turned by foo() and written to the standard output stream in main(). However, the example doesn’t display
0. j is set to a random value – namely the address where the int variable was before the memory was freed. The
block behind BOOST_SCOPE_EXIT got a reference to i and freed the memory. But since the block is executed at
the end of foo(), the assignment of 0 to i is too late. The return value of foo() is a copy of i that gets created
before i is set to 0.
You can ignore Boost.ScopeExit if you use a C++11 development environment. In that case, you can use RAII
without resource-specific classes with the help of lambda functions.

11

http://www.boost.org/libs/scope_exit

CHAPTER 3. BOOST.SCOPEEXIT

Example 3.2 defines the class scope_exit whose constructor accepts a function. This function is called by the
destructor. Furthermore, a helper function, make_scope_exit(), is defined that makes it possible to instantiate
scope_exit without having to specify a template parameter.
In foo() a lambda function is passed to make_scope_exit(). The lambda function looks like the block af-
ter BOOST_SCOPE_EXIT in Example 3.1: The dynamically allocated int variable whose address is stored in i is
freed with delete. Then 0 is assigned to i.
The example does the same thing as the previous one. Not only is the int variable deleted, but j is not set to 0
either when it is written to the standard output stream.
Example 3.2 Boost.ScopeExit with C++11 lambda functions
#include <iostream>
#include <utility>

template <typename T>
struct scope_exit
{

scope_exit(T &&t) : t_{std::move(t)} {}
~scope_exit() { t_(); }
T t_;

};

template <typename T>
scope_exit<T> make_scope_exit(T &&t) { return scope_exit<T>{

std::move(t)}; }

int *foo()
{

int *i = new int{10};
auto cleanup = make_scope_exit([&i]() mutable { delete i; i = 0; });
std::cout << *i << '\n';
return i;

}

int main()
{

int *j = foo();
std::cout << j << '\n';

}

Example 3.3 introduces some peculiarities of BOOST_SCOPE_EXIT:

• When BOOST_SCOPE_EXIT is used to define more than one block in a scope, the blocks are executed in
reverse order. Example 3.3 displays first followed by last.

• If no variables will be passed to BOOST_SCOPE_EXIT, you need to specify void. The parentheses must
not be empty.

• If you use BOOST_SCOPE_EXIT in a member function and you need to pass a pointer to the current object,
you must use this_, not this.

Example 3.3 displays first, last, and 20 in that order.
Example 3.3 Peculiarities of BOOST_SCOPE_EXIT
#include <boost/scope_exit.hpp>
#include <iostream>

struct x
{

int i;

void foo()
{

i = 10;
BOOST_SCOPE_EXIT(void)
{

12

CHAPTER 3. BOOST.SCOPEEXIT

std::cout << "last\n";
} BOOST_SCOPE_EXIT_END
BOOST_SCOPE_EXIT(this_)
{

this_->i = 20;
std::cout << "first\n";

} BOOST_SCOPE_EXIT_END
}

};

int main()
{

x obj;
obj.foo();
std::cout << obj.i << '\n';

}

13

Chapter 4

Boost.Pool

Boost.Pool is a library that contains a few classes to manage memory. While C++ programs usually use new to
allocate memory dynamically, the details of how memory is provided depends on the implementation of the stan-
dard library and the operating system. With Boost.Pool you can, for example, accelerate memory management to
provide memory to your program faster.
Boost.Pool doesn't change the behavior of new or of the operating system. Boost.Pool works because the man-
aged memory is requested from the operating system first – for example using new. From the outside, your pro-
gram has already allocated the memory, but internally, the memory isn’t required yet and is handed over to Boost.Pool
to manage it.
Boost.Pool partitions memory segments with the same size. Every time you request memory from Boost.Pool,
the library accesses the next free segment and assigns memory from that segment to you. The entire segment is
then marked as used, no matter how many bytes you actually need from that segment.
This memory management concept is called simple segregated storage. This is the only concept supported by
Boost.Pool. It is especially useful if many objects of the same size have to be created and destroyed frequently.
In this case the required memory can be provided and released quickly.
Boost.Pool provides the class boost::simple_segregated_storage to create and manage segregated mem-
ory. boost::simple_segregated_storage is a low-level class that you usually will not use in your pro-
grams directly. It is only used in Example 4.1 to illustrate simple segregated storage. All other classes from
Boost.Pool are internally based on boost::simple_segregated_storage.
Example 4.1 Using boost::simple_segregated_storage

#include <boost/pool/simple_segregated_storage.hpp>
#include <vector>
#include <cstddef>

int main()
{

boost::simple_segregated_storage<std::size_t> storage;
std::vector<char> v(1024);
storage.add_block(&v.front(), v.size(), 256);

int *i = static_cast<int*>(storage.malloc());
*i = 1;

int *j = static_cast<int*>(storage.malloc_n(1, 512));
j[10] = 2;

storage.free(i);
storage.free_n(j, 1, 512);

}

The header file boost/pool/simple_segregated_storage.hpp must be included to use the class
template boost::simple_segregated_storage. Example 4.1 passes std::size_t as the template parameter.
This parameter specifies which type should be used for numbers passed to member functions of boost::simpl
e_segregated_storage to refer, for example, to the size of a segment. The practical relevance of this template
parameter is rather low.

14

http://www.boost.org/libs/pool

CHAPTER 4. BOOST.POOL

More interesting are the member functions called on boost::simple_segregated_storage. First, add_bl
ock() is called to pass a memory block with 1024 bytes to storage. The memory is provided by the vector v.
The third parameter passed to add_block() specifies that the memory block should be partitioned in segments
with 256 bytes each. Because the total size of the memory block is 1024 bytes, the memory managed by stor
age consists of four segments.
The calls to malloc() and malloc_n() request memory from storage. While malloc() returns a pointer to
a free segment, malloc_n() returns a pointer to one or more contiguous segments that provide as many bytes in
one block as requested. Example 4.1 requests a block with 512 bytes with malloc_n(). This call consumes two
segments, since each segment is 256 bytes. After the calls to malloc() and malloc_n(), storage has only
one unused segment left.
At the end of the example, all segments are released with free() and free_n(). After these two calls, all seg-
ments are available and could be requested again with malloc() or malloc_n().
You usually don’t use boost::simple_segregated_storage directly. Boost.Pool provides other classes that
allocate memory automatically without requiring you to allocate memory yourself and pass it to boost::simpl
e_segregated_storage.
Example 4.2 Using boost::object_pool

#include <boost/pool/object_pool.hpp>

int main()
{

boost::object_pool<int> pool;

int *i = pool.malloc();
*i = 1;

int *j = pool.construct(2);

pool.destroy(i);
pool.destroy(j);

}

Example 4.2 uses the class boost::object_pool, which is defined in boost/pool/object_pool.hpp.
Unlike boost::simple_segregated_storage, boost::object_pool knows the type of the objects that
will be stored in memory. pool in Example 4.2 is simple segregated storage for int values. The memory man-
aged by pool consists of segments, each of which is the size of an int – 4 bytes for example.
Another difference is that you don’t need to provide memory to boost::object_pool. boost::object_
pool allocates memory automatically. In Example 4.2, the call to malloc() makes pool allocate a memory
block with space for 32 int values. malloc() returns a pointer to the first of these 32 segments that an int value
can fit into exactly.
Please note that malloc() returns a pointer of type int*. Unlike boost::simple_segregated_storage in
Example 4.1, no cast operator is required.
construct() is similar to malloc() but initializes an object via a call to the constructor. In Example 4.2, j
refers to an int object initialized with the value 2.
Please note that pool can return a free segment from the pool of 32 segments when construct() is called. The
call to construct() does not make Example 4.2 request memory from the operating system.
The last member function called in Example 4.2 is destroy(), which releases an int object.
Example 4.3 Changing the segment size with boost::object_pool

#include <boost/pool/object_pool.hpp>
#include <iostream>

int main()
{

boost::object_pool<int> pool{32, 0};
pool.construct();
std::cout << pool.get_next_size() << '\n';
pool.set_next_size(8);

}

You can pass two parameters to the constructor of boost::object_pool. The first parameter sets the size of

15

CHAPTER 4. BOOST.POOL

the memory block that boost::object_pool will allocate when the first segment is requested with a call to
malloc() or construct(). The second parameter sets the maximum size of the memory block to allocate.
If malloc() or construct() are called so often that all segments in a memory block are used, the next call to
one of these member functions will cause boost::object_pool to allocate a new memory block, which will
be twice as big as the previous one. The size will double each time a new memory block is allocated by boost:
:object_pool. boost::object_pool can manage an arbitrary number of memory blocks, but their sizes will
grow exponentially. The second constructor parameter lets you limit the growth.
The default constructor of boost::object_pool does the same as what the call to the constructor in Exam-
ple 4.3 does. The first parameter sets the size of the memory block to 32 int values. The second parameter spec-
ifies that there is no maximum size. If 0 is passed, boost::object_pool can double the size of the memory
block indefinitely.
The call to construct() in Example 4.3 makes pool allocate a memory block of 32 int values. pool can serve
up to 32 calls to malloc() or construct() without requesting memory from the operating system. If more
memory is required, the next memory block to allocate will have space for 64 int values.
get_next_size() returns the size of the next memory block to allocate. set_next_size() lets you set the
size of the next memory block. In Example 4.3 get_next_size() returns 64. The call to set_next_size()
changes the size of the next memory block to allocate from 64 to 8 int values. With set_next_size() the size
of the next memory block can be changed directly. If you only want to set a maximum size, pass it via the second
parameter to the constructor.
With boost::singleton_pool, Boost.Pool provides a class between boost::simple_segregated_stor
age and boost::object_pool (see Example 4.4).
Example 4.4 Using boost::singleton_pool

#include <boost/pool/singleton_pool.hpp>

struct int_pool {};
typedef boost::singleton_pool<int_pool, sizeof(int)> singleton_int_pool;

int main()
{

int *i = static_cast<int*>(singleton_int_pool::malloc());
*i = 1;

int *j = static_cast<int*>(singleton_int_pool::ordered_malloc(10));
j[9] = 2;

singleton_int_pool::release_memory();
singleton_int_pool::purge_memory();

}

boost::singleton_pool is defined in boost/pool/singleton_pool.hpp. This class is similar to
boost::simple_segregated_storage since it also expects the segment size as a template parameter but not
the type of the objects to store. That’s why member functions such as ordered_malloc() and malloc()return
a pointer of type void*, which must be cast explicitly.
This class is also similar to boost::object_pool because it allocates memory automatically. The size of the
next memory block and an optional maximum size are passed as template parameters. Here boost::singleto
n_pool differs from boost::object_pool: you can’t change the size of the next memory block in boost::
singleton_pool at run time.
You can create multiple objects with boost::singleton_pool if you want to manage several memory pools.
The first template parameter passed to boost::singleton_pool is a tag. The tag is an arbitrary type that
serves as a name for the memory pool. Example 4.4 uses the structure int_pool as a tag to highlight that sin
gleton_int_pool is a pool that manages int values. Thanks to tags, multiple singletons can manage different
memory pools, even if the second template parameter for the size is the same. The tag has no purpose other than
creating separate instances of boost::singleton_pool.
boost::singleton_pool provides two member functions to release memory: release_memory() releases
all memory blocks that aren’t used at the moment, and purge_memory() releases all memory blocks – including
those currently being used. The call to purge_memory() resets boost::singleton_pool.
release_memory() and purge_memory() return memory to the operating system. To return memory to boost:
:singleton_pool instead of the operating system, call member functions such as free() or ordered_f
ree().

16

CHAPTER 4. BOOST.POOL

boost::object_pool and boost::singleton_pool allow you to request memory explicitly. You do this
by calling member functions such as malloc() or construct(). Boost.Pool also provides the class boost::
pool_allocator, which you can pass as an allocator to containers (see Example 4.5).
Example 4.5 Using boost::pool_allocator

#include <boost/pool/pool_alloc.hpp>
#include <vector>

int main()
{

std::vector<int, boost::pool_allocator<int>> v;
for (int i = 0; i < 1000; ++i)

v.push_back(i);

v.clear();
boost::singleton_pool<boost::pool_allocator_tag, sizeof(int)>::

purge_memory();
}

boost::pool_allocator is defined in boost/pool/pool_alloc.hpp. The class is an allocator that
is usually passed as a second template parameter to containers from the standard library. The allocator provides
memory required by the container.
boost::pool_allocator is based on boost::singleton_pool. To release memory, you have to use a tag
to access boost::singleton_pool and call purge_memory() or release_memory(). Example 4.5 uses the
tag boost::pool_allocator_tag. This tag is defined by Boost.Pool and is used by boost::pool_alloca
tor for the internal boost::singleton_pool.
When Example 4.5 calls push_back() the first time, v accesses the allocator to get the requested memory. Be-
cause the allocator boost::pool_allocator is used, a memory block with space for 32 int values is allocated.
v receives the pointer to the first segment in that memory block that has the size of an int. With every subsequent
call to push_back(), another segment is used from the memory block until the allocator detects that a bigger
memory block is required.
Please note that you should call clear() on a container before you release memory with purge_memory() (see
Example 4.5). A call to purge_memory() releases memory but doesn’t notify the container that it doesn’t own
the memory anymore. A call to release_memory() is less dangerous because it only releases memory blocks
that aren’t in use.
Boost.Pool also provides an allocator called boost::fast_pool_allocator (see Example 4.6).
Example 4.6 Using boost::fast_pool_allocator

#define BOOST_POOL_NO_MT
#include <boost/pool/pool_alloc.hpp>
#include <list>

int main()
{

typedef boost::fast_pool_allocator<int,
boost::default_user_allocator_new_delete,
boost::details::pool::default_mutex,
64, 128> allocator;

std::list<int, allocator> l;
for (int i = 0; i < 1000; ++i)

l.push_back(i);

l.clear();
boost::singleton_pool<boost::fast_pool_allocator_tag, sizeof(int)>::

purge_memory();
}

Both allocators are used in the same way, but boost::pool_allocator should be preferred if you are request-
ing contiguous segments. boost::fast_pool_allocator can be used if segments are requested one by one.
Grossly simplified: You use boost::pool_allocator for std::vector and boost::fast_pool_alloca
tor for std::list.

17

CHAPTER 4. BOOST.POOL

Example 4.6 illustrates which template parameters can be passed to boost::fast_pool_allocator. boost:
:pool_allocator accepts the same parameters.
boost::default_user_allocator_new_delete is a class that allocates memory blocks with new and re-
leases them with delete[]. You can also use boost::default_user_allocator_malloc_free, which
calls malloc() and free().
boost::details::pool::default_mutex is a type definition that is set to boost::mutex or boost::details::
pool::null_mutex. boost::mutex is the default type that supports multiple threads requesting memory
from the allocator. If the macro BOOST_POOL_NO_MT is defined as in Example 4.6, multithreading support for
Boost.Pool is disabled. The allocator in Example 4.6 uses a null mutex.
The last two parameters passed to boost::fast_pool_allocator in Example 4.6 set the size of the first
memory block and the maximum size of memory blocks to allocate.

18

Part II

String Handling

19

The following libraries provide tools to simplify working with strings.

• Boost.StringAlgorithms defines many algorithms specifically for strings. For example, you will find algo-
rithms to convert strings to lower or upper case.

• Boost.LexicalCast provides a cast operator to convert a number to a string or vice versa. The library uses
stringstreams internally but might be optimized for conversions between certain types.

• Boost.Format provides a type-safe alternative for std::printf(). Like Boost.LexicalCast, this library
uses stringstreams internally. Boost.Format is extensible and supports user-defined types if output stream
operators are defined.

• Boost.Regex and Boost.Xpressive are libraries to search within strings with regular expressions. While
Boost.Regex expects regular expressions written as strings, Boost.Xpressive lets you write them as C++
code.

• Boost.Tokenizer makes it possible to iterate over substrings in a string.

• Boost.Spirit can be used to develop parsers based on rules similar to Extended Backus-Naur-Form.

20

Chapter 5

Boost.StringAlgorithms

The Boost.StringAlgorithms library provides many free-standing functions for string manipulation. Strings can
be of type std::string, std::wstring, or any other instance of the class template std::basic_string.
This includes the string classes std::u16string and std::u32string introduced with C++11.
The functions are categorized within different header files. For example, functions converting from uppercase to
lowercase are defined in boost/algorithm/string/case_conv.hpp. Because Boost.StringAlgorithms
consists of more than 20 different categories and as many header files, boost/algorithm/string.hpp
acts as the common header including all other header files for convenience.
Example 5.1 Converting strings to uppercase
#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
std::cout << to_upper_copy(s) << '\n';

}

The function boost::algorithm::to_upper_copy() converts a string to uppercase, and boost::algo
rithm::to_lower_copy() converts a string to lowercase. Both functions return a copy of the input string,
converted to the specified case. To convert the string in place, use the functions boost::algorithm::to_up
per() or boost::algorithm::to_lower().
Example 5.1 converts the string “Boost C++ Libraries” to uppercase using boost::algorithm::to_upper_c
opy(). The example writes BOOST C++ LIBRARIES to standard output.
Functions from Boost.StringAlgorithms consider locales. Functions like boost::algorithm::to_upper_c
opy() use the global locale if no locale is passed explicitly as a parameter.
Example 5.2 Converting a string to uppercase with a locale
#include <boost/algorithm/string.hpp>
#include <string>
#include <locale>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ k\xfct\xfcphaneleri";
std::string upper_case1 = to_upper_copy(s);
std::string upper_case2 = to_upper_copy(s, std::locale{"Turkish"});
std::locale::global(std::locale{"Turkish"});
std::cout << upper_case1 << '\n';
std::cout << upper_case2 << '\n';

}

21

http://www.boost.org/libs/algorithm/string

CHAPTER 5. BOOST.STRINGALGORITHMS

Example 5.2 calls boost::algorithm::to_upper_copy() twice to convert the Turkish string “Boost C++
kütüphaneleri” to uppercase. The first call to boost::algorithm::to_upper_copy() uses the global locale,
which in this case is the C locale. In the C locale, there is no uppercase mapping for characters with umlauts, so
the output will look like this: BOOST C++ KüTüPHANELERI.
The Turkish locale is passed to the second call to boost::algorithm::to_upper_copy(). Since this lo-
cale does have uppercase equivalents for umlauts, the entire string can be converted to uppercase. Therefore, the
second call to boost::algorithm::to_upper_copy() correctly converts the string, which looks like this:
BOOST C++ KÜTÜPHANELERI.

Note

If you want to run the example on a POSIX operating system, replace “Turkish” with
“tr_TR”, and make sure the Turkish locale is installed.

Example 5.3 Algorithms to remove characters from a string

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
std::cout << erase_first_copy(s, "s") << '\n';
std::cout << erase_nth_copy(s, "s", 0) << '\n';
std::cout << erase_last_copy(s, "s") << '\n';
std::cout << erase_all_copy(s, "s") << '\n';
std::cout << erase_head_copy(s, 5) << '\n';
std::cout << erase_tail_copy(s, 9) << '\n';

}

Boost.StringAlgorithms provides several functions you can use to delete individual characters from a string (see
Example 5.3). For example, boost::algorithm::erase_all_copy() will remove all occurrences of a par-
ticular character from a string. To remove only the first occurrence of the character, use boost::algorithm:
:erase_first_copy() instead. To shorten a string by a specific number of characters on either end, use the
functions boost::algorithm::erase_head_copy() and boost::algorithm::erase_tail_copy().
Example 5.4 Searching for substrings with boost::algorithm::find_first()

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
boost::iterator_range<std::string::iterator> r = find_first(s, "C++");
std::cout << r << '\n';
r = find_first(s, "xyz");
std::cout << r << '\n';

}

Functions such as boost::algorithm::find_first(), boost::algorithm::find_last(), boost::
algorithm::find_nth(), boost::algorithm::find_head() and boost::algorithm::find_tail()
are available to find strings within strings.

22

CHAPTER 5. BOOST.STRINGALGORITHMS

All of these functions return a pair of iterators of type boost::iterator_range. This class originates from
Boost.Range, which implements a range concept based on the iterator concept. Because the operator operato
r<< is overloaded for boost::iterator_range, the result of the individual search algorithm can be written
directly to standard output. Example 5.4 prints C++ for the first result and an empty string for the second one.
Example 5.5 Concatenating strings with boost::algorithm::join()

#include <boost/algorithm/string.hpp>
#include <string>
#include <vector>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::vector<std::string> v{"Boost", "C++", "Libraries"};
std::cout << join(v, " ") << '\n';

}

A container of strings is passed as the first parameter to the function boost::algorithm::join(), which con-
catenates them separated by the second parameter. Example 5.5 will output Boost C++ Libraries.
Example 5.6 Algorithms to replace characters in a string

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
std::cout << replace_first_copy(s, "+", "-") << '\n';
std::cout << replace_nth_copy(s, "+", 0, "-") << '\n';
std::cout << replace_last_copy(s, "+", "-") << '\n';
std::cout << replace_all_copy(s, "+", "-") << '\n';
std::cout << replace_head_copy(s, 5, "BOOST") << '\n';
std::cout << replace_tail_copy(s, 9, "LIBRARIES") << '\n';

}

Like the functions for searching strings or removing characters from strings, Boost.StringAlgorithms also pro-
vides functions for replacing substrings within a string. These include the following functions: boost::algor
ithm::replace_first_copy(), boost::algorithm::replace_nth_copy(), boost::algorithm::
replace_last_copy(), boost::algorithm::replace_all_copy(), boost::algorithm::replace_h
ead_copy() and boost::algorithm::replace_tail_copy(). They can be applied in the same way as the
functions for searching and removing, except they require an additional parameter – the replacement string (see
Example 5.6).
Example 5.7 Algorithms to trim strings

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "\t Boost C++ Libraries \t";
std::cout << "_" << trim_left_copy(s) << "_\n";
std::cout << "_" << trim_right_copy(s) << "_\n";
std::cout << "_" << trim_copy(s) << "_\n";

}

23

CHAPTER 5. BOOST.STRINGALGORITHMS

To remove spaces on either end of a string, use boost::algorithm::trim_left_copy(), boost::algori
thm::trim_right_copy() and boost::algorithm::trim_copy() (see Example 5.7). The global locale
determines which characters are considered to be spaces.
Boost.StringAlgorithms lets you provide a predicate as an additional parameter for different functions to de-
termine which characters of the string the function is applied to. The versions with predicates are: boost::
algorithm::trim_right_copy_if(), boost::algorithm::trim_left_copy_if(), and boost::
algorithm::trim_copy_if().
Example 5.8 Creating predicates with boost::algorithm::is_any_of()

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "--Boost C++ Libraries--";
std::cout << trim_left_copy_if(s, is_any_of("-")) << '\n';
std::cout << trim_right_copy_if(s, is_any_of("-")) << '\n';
std::cout << trim_copy_if(s, is_any_of("-")) << '\n';

}

Example 5.8 uses another function called boost::algorithm::is_any_of(), which is a helper function to
create a predicate that checks whether a certain character – passed as parameter to is_any_of() – exists in a
string. With boost::algorithm::is_any_of(), the characters for trimming a string can be specified. Exam-
ple 5.8 uses the hyphen character.
Boost.StringAlgorithms provides many helper functions that return commonly used predicates.
Example 5.9 Creating predicates with boost::algorithm::is_digit()

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "123456789Boost C++ Libraries123456789";
std::cout << trim_left_copy_if(s, is_digit()) << '\n';
std::cout << trim_right_copy_if(s, is_digit()) << '\n';
std::cout << trim_copy_if(s, is_digit()) << '\n';

}

The predicate returned by boost::algorithm::is_digit() tests whether a character is numeric. In Exam-
ple 5.9, boost::algorithm::is_digit() is used to remove digits from the string s.
Boost.StringAlgorithms also provides helper functions to check whether a character is uppercase or lowercase:
boost::algorithm::is_upper() and boost::algorithm::is_lower(). All of these functions use the
global locale by default, unless you pass in a different locale as a parameter.
Besides the predicates that verify individual characters of a string, Boost.StringAlgorithms also offers functions
that work with strings instead (see Example 5.10).
Example 5.10 Algorithms to compare strings with others

#include <boost/algorithm/string.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
std::cout.setf(std::ios::boolalpha);

24

CHAPTER 5. BOOST.STRINGALGORITHMS

std::cout << starts_with(s, "Boost") << '\n';
std::cout << ends_with(s, "Libraries") << '\n';
std::cout << contains(s, "C++") << '\n';
std::cout << lexicographical_compare(s, "Boost") << '\n';

}

The boost::algorithm::starts_with(), boost::algorithm::ends_with(), boost::algorithm::
contains(), and boost::algorithm::lexicographical_compare() functions compare two individual
strings.
Example 5.11 introduces a function that splits a string into smaller parts.
Example 5.11 Splitting strings with boost::algorithm::split()

#include <boost/algorithm/string.hpp>
#include <string>
#include <vector>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
std::vector<std::string> v;
split(v, s, is_space());
std::cout << v.size() << '\n';

}

With boost::algorithm::split(), a given string can be split based on a delimiter. The substrings are stored
in a container. The function requires as its third parameter a predicate that tests each character and checks whether
the string should be split at the given position. Example 5.11 uses the helper function boost::algorithm::
is_space() to create a predicate that splits the string at every space character.
Many of the functions introduced in this chapter have versions that ignore the case of the string. These versions
typically have the same name, except for a leading i. For example, the equivalent function to boost::algori
thm::erase_all_copy() is boost::algorithm::ierase_all_copy().
Finally, many functions of Boost.StringAlgorithms also support regular expressions. Example 5.12 uses the func-
tion boost::algorithm::find_regex() to search for a regular expression.
Example 5.12 Searching strings with boost::algorithm::find_regex()

#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/regex.hpp>
#include <string>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::string s = "Boost C++ Libraries";
boost::iterator_range<std::string::iterator> r =

find_regex(s, boost::regex{"\\w\\+\\+"});
std::cout << r << '\n';

}

In order to use the regular expression, the program accesses a class called boost::regex, which is presented in
Chapter 8.
Example 5.12 writes C++ to standard output.

25

Chapter 6

Boost.LexicalCast

Boost.LexicalCast provides a cast operator, boost::lexical_cast, that can convert numbers from strings to
numeric types like int or double and vice versa. boost::lexical_cast is an alternative to functions like std:
:stoi(), std::stod(), and std::to_string(), which were added to the standard library in C++11.
Example 6.1 Using boost::lexical_cast

#include <boost/lexical_cast.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = boost::lexical_cast<std::string>(123);
std::cout << s << '\n';
double d = boost::lexical_cast<double>(s);
std::cout << d << '\n';

}

The cast operator boost::lexical_cast can convert numbers of different types. Example 6.1 first converts
the integer 123 to a string, then converts the string to a floating point number. To use boost::lexical_cast,
include the header file boost/lexical_cast.hpp.
boost::lexical_cast uses streams internally to perform the conversion. Therefore, only types with over-
loaded operator<< and operator>> can be converted. However, boost::lexical_cast can be optimized
for certain types to implement a more efficient conversion.
Example 6.2 boost::bad_lexical_cast in case of an error

#include <boost/lexical_cast.hpp>
#include <string>
#include <iostream>

int main()
{

try
{

int i = boost::lexical_cast<int>("abc");
std::cout << i << '\n';

}
catch (const boost::bad_lexical_cast &e)
{

std::cerr << e.what() << '\n';
}

}

If a conversion fails, an exception of type boost::bad_lexical_cast, which is derived from std::bad_c
ast, is thrown. Example 6.2 throws an exception because the string “abc” cannot be converted to a number of
type int.

26

http://www.boost.org/doc/libs/release/doc/html/boost_lexical_cast.html

Chapter 7

Boost.Format

Boost.Format offers a replacement for the function std::printf(). std::printf() originates from the C
standard and allows formatted data output. However, it is neither type safe nor extensible. Boost.Format provides
a type-safe and extensible alternative.
Boost.Format provides a class called boost::format, which is defined in boost/format.hpp. Similar
to std::printf(), a string containing special characters to control formatting is passed to the constructor of
boost::format. The data that replaces these special characters in the output is linked via the operator operat
or%.
Example 7.1 Formatted output with boost::format

#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%1%.%2%.%3%"} % 12 % 5 % 2014 << '\n';
}

The Boost.Format format string uses numbers placed between two percent signs as placeholders for the actual
data, which will be linked in using operator%. Example 7.1 creates a date string in the form 12.5.2014 using
the numbers 12, 5, and 2014 as the data. To make the month appear in front of the day, which is common in the
United States, the placeholders can be swapped. Example 7.2 makes this change, displaying 5/12/2014
Example 7.2 Numbered placeholders with boost::format

#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%2%/%1%/%3%"} % 12 % 5 % 2014 << '\n';
}

To format data with manipulators, Boost.Format provides a function called boost::io::group().
Example 7.3 Using manipulators with boost::io::group()

#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%1% %2% %1%"} %
boost::io::group(std::showpos, 1) % 2 << '\n';

}

Example 7.3 uses the manipulator std::showpos() on the value that will be associated with “%1%”. There-
fore, this example will display +1 2 +1 as output. Because the manipulator std::showpos() has been linked
to the first data value using boost::io::group(), the plus sign is automatically added whenever this value is
displayed. In this case, the format placeholder “%1%” is used twice.

27

http://www.boost.org/libs/format

CHAPTER 7. BOOST.FORMAT

If the plus sign should only be shown for the first output of 1, the format placeholder needs to be customized.
Example 7.4 Placeholders with special characters
#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%|1$+| %2% %1%"} % 1 % 2 << '\n';
}

Example 7.4 does this. In this example, the first instance of the placeholder “%1%” is replaced with “%|1$+|”.
Customization of a format does not just add two additional pipe signs. The reference to the data is also placed
between the pipe signs and uses “1$” instead of “1%”. This is required to modify the output to be +1 2 1. You
can find details about the format specifications in the Boost documentation.
Placeholder references to data must be specified either for all placeholders or for none. Example 7.5 only pro-
vides references for one of three placeholders, which generates an error at run time.
Example 7.5 boost::io::format_error in case of an error
#include <boost/format.hpp>
#include <iostream>

int main()
{

try
{

std::cout << boost::format{"%|+| %2% %1%"} % 1 % 2 << '\n';
}
catch (boost::io::format_error &ex)
{

std::cout << ex.what() << '\n';
}

}

Example 7.5 throws an exception of type boost::io::format_error. Strictly speaking, Boost.Format throws
boost::io::bad_format_string. However, because the different exception classes are all derived from
boost::io::format_error, it is usually easier to catch exceptions of this type.
Example 7.6 shows how to write the program without using references in the format string.
Example 7.6 Placeholders without numbers
#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%|+| %|| %||"} % 1 % 2 % 1 << '\n';
}

The pipe signs for the second and third placeholder can safely be omitted in this case because they do not specify
any format. The resulting syntax then closely resembles std::printf() (see Example 7.7).
Example 7.7 boost::format with the syntax used from std::printf()

#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%+d %d %d"} % 1 % 2 % 1 << '\n';
}

While the format may look like that used by std::printf(), Boost.Format provides the advantage of type
safety. The letter “d” within the format string does not indicate the output of a number. Instead, it applies the ma-
nipulator std::dec() to the internal stream object used by boost::format. This makes it possible to specify
format strings that would make no sense for std::printf() and would result in a crash.

28

http://www.boost.org/libs/format/doc/format.html#printf_directives

CHAPTER 7. BOOST.FORMAT

Example 7.8 boost::format with seemingly invalid placeholders

#include <boost/format.hpp>
#include <iostream>

int main()
{

std::cout << boost::format{"%+s %s %s"} % 1 % 2 % 1 << '\n';
}

std::printf() allows the letter “s” only for strings of type const char*. With std::printf(), the combi-
nation of “%s” and a numeric value would fail. However, Example 7.8 works perfectly. Boost.Format does not
require a string. Instead, it applies the appropriate manipulators to configure the internal stream.
Boost.Format is both type safe and extensible. Objects of any type can be used with Boost.Format as long as the
operator operator<< is overloaded for std::ostream.
Example 7.9 boost::format with user-defined type

#include <boost/format.hpp>
#include <string>
#include <iostream>

struct animal
{

std::string name;
int legs;

};

std::ostream &operator<<(std::ostream &os, const animal &a)
{

return os << a.name << ',' << a.legs;
}

int main()
{

animal a{"cat", 4};
std::cout << boost::format{"%1%"} % a << '\n';

}

Example 7.9 uses boost::format to write an object of the user-defined type animal to standard output. This is
possible because the stream operator is overloaded for animal.

29

Chapter 8

Boost.Regex

Boost.Regex allows you to use regular expressions in C++. As the library is part of the standard library since
C++11, you don't depend on Boost.Regex if your development environment supports C++11. You can use identi-
cally named classes and functions in the namespace std if you include the header file regex.
The two most important classes in Boost.Regex are boost::regex and boost::smatch, both defined in boost/
regex.hpp. The former defines a regular expression, and the latter saves the search results.
Boost.Regex provides three different functions to search for regular expressions.
Example 8.1 Comparing strings with boost::regex_match()

#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost Libraries";
boost::regex expr{"\\w+\\s\\w+"};
std::cout << std::boolalpha << boost::regex_match(s, expr) << '\n';

}

boost::regex_match() (see Example 8.1) compares a string with a regular expression. It will return true
only if the expression matches the complete string.
boost::regex_search() searches a string for a regular expression.
Example 8.2 Searching strings with boost::regex_search()

#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost Libraries";
boost::regex expr{"(\\w+)\\s(\\w+)"};
boost::smatch what;
if (boost::regex_search(s, what, expr))
{

std::cout << what[0] << '\n';
std::cout << what[1] << "_" << what[2] << '\n';

}
}

boost::regex_search() expects a reference to an object of type boost::smatch as an additional parameter,
which is used to store the results. boost::regex_search() only searches for groups. That's why Example 8.2
returns two strings based on the two groups found in the regular expression.
The result storage class boost::smatch is a container holding elements of type boost::sub_match, which
can be accessed through an interface similar to the one of std::vector. For example, elements can be accessed
via operator[].

30

http://www.boost.org/libs/regex

CHAPTER 8. BOOST.REGEX

The class boost::sub_match stores iterators to the specific positions in a string corresponding to the groups
of a regular expression. Because boost::sub_match is derived from std::pair, the iterators that reference
a particular substring can be accessed with first and second. However, to write a substring to the standard
output stream, you don’t have to access these iterators (see Example 8.2). Using the overloaded operator operat
or<<, the substring can be written directly to standard output.
Please note that because iterators are used to point to matched strings, boost::sub_match does not copy them.
This implies that results are accessible only as long as the corresponding string, which is referenced by the itera-
tors, exists.
Furthermore, please note that the first element of the container boost::smatch stores iterators referencing the
string that matches the entire regular expression. The first substring that matches the first group is accessible at
index 1.
The third function offered by Boost.Regex is boost::regex_replace() (see Example 8.3).
Example 8.3 Replacing characters in strings with boost::regex_replace()

#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = " Boost Libraries ";
boost::regex expr{"\\s"};
std::string fmt{"_"};
std::cout << boost::regex_replace(s, expr, fmt) << '\n';

}

In addition to the search string and the regular expression, boost::regex_replace() needs a format that de-
fines how substrings that match individual groups of the regular expression should be replaced. In case the regu-
lar expression does not contain any groups, the corresponding substrings are replaced one to one using the given
format. Thus, Example 8.3 will output _Boost_Libraries_.
boost::regex_replace() always searches through the entire string for the regular expression. Thus, the pro-
gram actually replaces all three spaces with underscores.
Example 8.4 Format with references to groups in regular expressions
#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost Libraries";
boost::regex expr{"(\\w+)\\s(\\w+)"};
std::string fmt{"\\2 \\1"};
std::cout << boost::regex_replace(s, expr, fmt) << '\n';

}

The format can access substrings returned by groups of the regular expression. Example 8.4 uses this technique
to swap the first and last word, displaying Libraries Boost as a result.
There are different standards for regular expressions and formats. Each of the three functions takes an additional
parameter that allows you to select a specific standard. You can also specify whether or not special characters
should be interpreted in a specific format or whether the format should replace the complete string that matches
the regular expression.
Example 8.5 Flags for formats
#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost Libraries";
boost::regex expr{"(\\w+)\\s(\\w+)"};
std::string fmt{"\\2 \\1"};

31

CHAPTER 8. BOOST.REGEX

std::cout << boost::regex_replace(s, expr, fmt,
boost::regex_constants::format_literal) << '\n';

}

Example 8.5 passes the flag boost::regex_constants::format_literal as the fourth parameter to boost:
:regex_replace() to suppress handling of special characters in the format. Because the complete string that
matches the regular expression is replaced with the format, the output of Example 8.5 is \2 \1.
Example 8.6 Iterating over strings with boost::regex_token_iterator

#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost Libraries";
boost::regex expr{"\\w+"};
boost::regex_token_iterator<std::string::iterator> it{s.begin(), s.end(),

expr};
boost::regex_token_iterator<std::string::iterator> end;
while (it != end)

std::cout << *it++ << '\n';
}

With boost::regex_token_iterator, Boost.Regex provides a class to iterate over a string with a regular
expression. In Example 8.6 the iteration returns the two words in s. it is initialized with iterators to s and the
regular expression “\w+”. The default constructor creates an end iterator.
Example 8.6 displays Boost and Libraries.
Example 8.7 Accessing groups with boost::regex_token_iterator

#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost Libraries";
boost::regex expr{"(\\w)\\w+"};
boost::regex_token_iterator<std::string::iterator> it{s.begin(), s.end(),

expr, 1};
boost::regex_token_iterator<std::string::iterator> end;
while (it != end)

std::cout << *it++ << '\n';
}

You can pass a number as an additional parameter to the constructor of boost::regex_token_iterator. If
1 is passed, as in Example 8.7, the iterator returns the first group in the regular expression. Because the regular
expression “(\w)\w+” is used, Example 8.7 writes the initials B and L to standard output.
If -1 is passed to boost::regex_token_iterator, the regular expression is the delimiter. An iterator initial-
ized with -1 returns substrings that do not match the regular expression.
Example 8.8 Linking a locale to a regular expression

#include <boost/regex.hpp>
#include <locale>
#include <string>
#include <iostream>

int main()
{

std::string s = "Boost k\xfct\xfcphaneleri";
boost::basic_regex<char, boost::cpp_regex_traits<char>> expr;
expr.imbue(std::locale{"Turkish"});
expr = "\\w+\\s\\w+";

32

CHAPTER 8. BOOST.REGEX

std::cout << std::boolalpha << boost::regex_match(s, expr) << '\n';
}

Example 8.8 links a locale with imbue() to expr. This is done to apply the regular expression to the string
“Boost kütüphaneleri,” which is the Turkish translation of “Boost Libraries.” If umlauts should be parsed as valid
letters, the locale must be set – otherwise boost::regex_match() returns false.
To use a locale of type std::locale, expr must be based on a class instantiated with the type boost::cpp_r
egex_traits. That’s why Example 8.8 doesn’t use boost::regex but instead uses boost::basic_regex<char,
boost::cpp_regex_traits<char>>. With the second template parameter of boost::basic_regex, the parameter
for imbue() can be defined indirectly. Only with boost::cpp_regex_traits can a locale of type std::
locale be passed to imbue().

Note

If you want to run the example on a POSIX operating system, replace “Turkish” with
“tr_TR”. Also make sure the locale for Turkish is installed.

Note that boost::regex is defined with a platform-dependent second template parameter. On Windows this
parameter is boost::w32_regex_traits, which allows an LCID to be passed to imbue(). An LCID is a
number that, on Windows, identifies a certain language and culture. If you want to write platform-independent
code, you must use boost::cpp_regex_traits explicitly, as in Example 8.8. Alternatively, you can define
the macro BOOST_REGEX_USE_CPP_LOCALE.

33

Chapter 9

Boost.Xpressive

Like Boost.Regex, Boost.Xpressive provides functions to search strings using regular expressions. However,
Boost.Xpressive makes it possible to write down regular expressions as C++ code rather than strings. That makes
it possible to check at compile time whether a regular expression is valid or not.
Only Boost.Regex was incorporated into C++11. The standard library doesn’t provide any support for writing
regular expressions as C++ code.
boost/xpressive/xpressive.hpp provides access to most library functions in Boost.Xpressive. For
some functions, additional header files must be included. All definitions of the library can be found in the names-
pace boost::xpressive.
Example 9.1 Comparing strings with boost::xpressive::regex_match

#include <boost/xpressive/xpressive.hpp>
#include <string>
#include <iostream>

using namespace boost::xpressive;

int main()
{

std::string s = "Boost Libraries";
sregex expr = sregex::compile("\\w+\\s\\w+");
std::cout << std::boolalpha << regex_match(s, expr) << '\n';

}

Boost.Xpressive basically provides the same functions as Boost.Regex, except they are defined in the namespace
of Boost.Xpressive. boost::xpressive::regex_match() compares strings, boost::xpressive::regex
_search() searches in strings, and boost::xpressive::regex_replace() replaces characters in strings.
You can see this in Example 9.1, which uses the function boost::xpressive::regex_match(), and which
looks similar to Example 8.1.
However, there is a fundamental difference between Boost.Xpressive and Boost.Regex. The type of the regular
expression in Boost.Xpressive depends on the type of the string being searched. Because s is based on std::
string in Example 9.1, the type of the regular expression must be boost::xpressive::sregex. Compare
this with Example 9.2, where the regular expression is applied to a string of type const char*.
Example 9.2 boost::xpressive::cregex with strings of type const char*

#include <boost/xpressive/xpressive.hpp>
#include <iostream>

using namespace boost::xpressive;

int main()
{

const char *c = "Boost Libraries";
cregex expr = cregex::compile("\\w+\\s\\w+");
std::cout << std::boolalpha << regex_match(c, expr) << '\n';

}

34

http://www.boost.org/libs/xpressive

CHAPTER 9. BOOST.XPRESSIVE

For strings of type const char*, use the class boost::xpressive::cregex. If you use other string types, such
as std::wstring or const wchar_t*, use boost::xpressive::wsregex or boost::xpressive::wcre
gex.
You must call the static member function compile() for regular expressions written as strings. The member
function must be called on the type used for the regular expression.
Boost.Xpressive supports direct initialization of regular expressions that are written as C++ code. The regular
expression has to be expressed in the notation supported by Boost.Xpressive (see Example 9.3).
Example 9.3 A regular expression with C++ code

#include <boost/xpressive/xpressive.hpp>
#include <string>
#include <iostream>

using namespace boost::xpressive;

int main()
{

std::string s = "Boost Libraries";
sregex expr = +_w >> _s >> +_w;
std::cout << std::boolalpha << regex_match(s, expr) << '\n';

}

The regular expression from Example 9.2, which was written as the string “\w+\s\w+”, is now expressed in Ex-
ample 9.3 as +_w >> _s >> +_w. It is exactly the same regular expression. Both examples search for at least
one alphanumeric character followed by one space followed by at least one alphanumeric character.
Boost.Xpressive makes it possible to write regular expressions with C++ code. The library provides objects for
character groups. For example, the object _w is similar to “\w”. _s has the same meaning as “\s”.
While “\w” and “\s” can be written one after another in a string, objects like _w and _s must be concatenated
with an operator. Otherwise, the result wouldn’t be valid C++ code. Boost.Xpressive provides the operator oper
ator>>, which is used in Example 9.3.
To express that at least one alphanumeric character should be found, _w is prefixed with a plus sign. While the
syntax of regular expressions expects that quantifiers are put behind character groups – like with “\w+” – the
plus sign must be put in front of _w. The plus sign is an unary operator, which in C++ must be put in front of an
object.
Boost.Xpressive emulates the rules of regular expressions as much as they can be emulated in C++. However,
there are limits. For example, the question mark is a meta character in regular expressions to express that a pre-
ceding item is optional. Since the question mark isn’t a valid operator in C++, Boost.Xpressive replaces it with
the exclamation mark. A notation like “\w?” becomes !_w with Boost.Xpressive because the exclamation mark
must be prefixed.
Boost.Xpressive supports actions that can be linked to expressions – something Boost.Regex doesn’t support.
Example 9.4 Linking actions to expressions

#include <boost/xpressive/xpressive.hpp>
#include <boost/xpressive/regex_actions.hpp>
#include <string>
#include <iterator>
#include <iostream>

using namespace boost::xpressive;

int main()
{

std::string s = "Boost Libraries";
std::ostream_iterator<std::string> it{std::cout, "\n"};
sregex expr = (+_w)[boost::xpressive::ref(it) = _] >> _s >> +_w;
std::cout << std::boolalpha << regex_match(s, expr) << '\n';

}

Example 9.4 returns true for boost::xpressive::regex_match() and writes Boost to standard output.
You can link actions to expressions. An action is executed when the respective expression is found. In Exam-
ple 9.4, the expression +_w is linked to the action boost::xpressive::ref(it) =_. The action is a lambda

35

CHAPTER 9. BOOST.XPRESSIVE

function. The object _ refers to characters found by the expression – in this case the first word in s. The respec-
tive characters are assigned to the iterator it. Because it is an iterator of type std::ostream_iterator,
which has been initialized with std::cout, Boost is written to standard output.
Please note that you must use the function boost::xpressive::ref() to wrap the iterator it. Only then it
is possible to assign _ to the iterator. _ is an object provided by Boost.Xpressive in the namespace boost::
xpressive, which normally couldn’t be assigned to an iterator of type std::ostream_iterator. Because
the assignment happens only when the string “Boost” has been found with +_w, boost::xpressive::ref()
turns the assignment into a lazy operation. Although the code in square brackets attached to +_w is, according to
C++ rules, immediately executed, the assignment to the iterator it can only occur when the regular expression is
used. Thus, boost::xpressive::ref(it) =_ isn’t executed immediately.
Example 9.4 includes the header file boost/xpressive/regex_actions.hpp. This is required because
actions aren’t available through boost/xpressive/xpressive.hpp.
Like Boost.Regex, Boost.Xpressive supports iterators to split a string with regular expressions. The classes boost:
:xpressive::regex_token_iterator and boost::xpressive::regex_iterator do this. It is also pos-
sible to link a locale to a regular expression to use a locale other than the global one.

36

Chapter 10

Boost.Tokenizer

The library Boost.Tokenizer allows you to iterate over partial expressions in a string by interpreting certain char-
acters as separators.
Example 10.1 Iterating over partial expressions in a string with boost::tokenizer

#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::char_separator<char>> tokenizer;
std::string s = "Boost C++ Libraries";
tokenizer tok{s};
for (tokenizer::iterator it = tok.begin(); it != tok.end(); ++it)

std::cout << *it << '\n';
}

Boost.Tokenizer defines a class template called boost::tokenizer in boost/tokenizer.hpp. It expects
as a template parameter a class that identifies coherent expressions. Example 10.1 uses the class boost::char_
separator, which interprets spaces and punctuation marks as separators.
A tokenizer must be initialized with a string of type std::string. Using the member functions begin() and
end(), the tokenizer can be accessed like a container. Partial expressions of the string used to initialize the to-
kenizer are available via iterators. How partial expressions are evaluated depends on the kind of class passed as
the template parameter.
Because boost::char_separator interprets spaces and punctuation marks as separators by default, Exam-
ple 10.1 displays Boost, C, +, +, and Libraries. boost::char_separator uses std::isspace() and
std::ispunct() to identify separator characters. Boost.Tokenizer distinguishes between separators that should
be displayed and separators that should be suppressed. By default, spaces are suppressed and punctuation marks
are displayed.
Example 10.2 Initializing boost::char_separator to adapt the iteration
#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::char_separator<char>> tokenizer;
std::string s = "Boost C++ Libraries";
boost::char_separator<char> sep{" "};
tokenizer tok{s, sep};
for (const auto &t : tok)

std::cout << t << '\n';
}

To keep punctuation marks from being interpreted as separators, initialize the boost::char_separator object
before passing it to the tokenizer.

37

http://www.boost.org/libs/tokenizer

CHAPTER 10. BOOST.TOKENIZER

The constructor of boost::char_separator accepts a total of three parameters, but only the first one is re-
quired. The first parameter describes the individual separators that are suppressed. Example 10.2, like Exam-
ple 10.1, treats spaces as separators.
The second parameter specifies the separators that should be displayed. If this parameter is omitted, no separators
are displayed, and the program will now display Boost, C++ and Libraries.
Example 10.3 Simulating the default behavior with boost::char_separator

#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::char_separator<char>> tokenizer;
std::string s = "Boost C++ Libraries";
boost::char_separator<char> sep{" ", "+"};
tokenizer tok{s, sep};
for (const auto &t : tok)

std::cout << t << '\n';
}

If a plus sign is passed as the second parameter, Example 10.3 behaves like Example 10.1.
The third parameter determines whether or not empty partial expressions are displayed. If two separators are
found back-to-back, the corresponding partial expression is empty. By default, these empty expressions are not
displayed. Using the third parameter, the default behavior can be changed.
Example 10.4 Initializing boost::char_separator to display empty partial expressions

#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::char_separator<char>> tokenizer;
std::string s = "Boost C++ Libraries";
boost::char_separator<char> sep{" ", "+", boost::keep_empty_tokens};
tokenizer tok{s, sep};
for (const auto &t : tok)

std::cout << t << '\n';
}

Example 10.4 displays two additional empty partial expressions. The first one is found between the two plus
signs, while the second one is found between the second plus sign and the following space.
Example 10.5 Boost.Tokenizer with wide strings

#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::char_separator<wchar_t>,
std::wstring::const_iterator, std::wstring> tokenizer;

std::wstring s = L"Boost C++ Libraries";
boost::char_separator<wchar_t> sep{L" "};
tokenizer tok{s, sep};
for (const auto &t : tok)

std::wcout << t << '\n';
}

Example 10.5 iterates over a string of type std::wstring. In order to support this string type, the tokenizer
must be initialized with additional template parameters. The class boost::char_separator must also be ini-
tialized with wchar_t.

38

CHAPTER 10. BOOST.TOKENIZER

Besides boost::char_separator, Boost.Tokenizer provides two additional classes to identify partial expres-
sions.
Example 10.6 Parsing CSV files with boost::escaped_list_separator

#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::escaped_list_separator<char>> tokenizer;
std::string s = "Boost,\"C++ Libraries\"";
tokenizer tok{s};
for (const auto &t : tok)

std::cout << t << '\n';
}

boost::escaped_list_separator is used to read multiple values separated by commas. This format is com-
monly known as CSV (Comma Separated Values). boost::escaped_list_separator also handles double
quotes and escape sequences. Therefore, the output of Example 10.6 is Boost and C++ Libraries.
The second class provided is boost::offset_separator, which must be instantiated. The corresponding ob-
ject must be passed to the constructor of boost::tokenizer as a second parameter.
Example 10.7 Iterating over partial expressions with boost::offset_separator

#include <boost/tokenizer.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tokenizer<boost::offset_separator> tokenizer;
std::string s = "Boost C++ Libraries";
int offsets[] = {5, 5, 9};
boost::offset_separator sep{offsets, offsets + 3};
tokenizer tok{s, sep};
for (const auto &t : tok)

std::cout << t << '\n';
}

boost::offset_separator specifies the locations within the string where individual partial expressions end.
Example 10.7 specifies that the first partial expression ends after 5 characters, the second ends after an additional
5 characters, and the third ends after the following 9 characters. The output will be Boost, C++ and Librar
ies.

39

Chapter 11

Boost.Spirit

This chapter introduces the library Boost.Spirit. Boost.Spirit is used to develop parsers for text formats. For ex-
ample, you can use Boost.Spirit to develop a parser to load configuration files. Boost.Spirit can also be used for
binary formats, although its usefulness in this respect is limited.
Boost.Spirit simplifies the development of parsers because formats are described with rules. Rules define what a
format looks like – Boost.Spirit does the rest. You can compare Boost.Spirit to regular expressions, in the sense
that it lets you handle complex processes – pattern searching in the case of regular expressions and parsing for
Boost.Spirit – without having to write code to implement that process.
Boost.Spirit expects rules to be described using Parsing Expression Grammar (PEG). PEG is related to Extended
Backus-Naur-Form (EBNF). Even if you are not familiar with these languages, the examples in this chapter
should be sufficient to get you started.
There are two versions of Boost.Spirit. The first version is known as Spirit.Classic. This version should not be
used anymore. The current version is 2.5.2. This is the version introduced in this chapter.
Since version 2.x, Boost.Spirit can be used to generate generators as well as parsers. While parsers read text for-
mats, generators write them. The component of Boost.Spirit that is used to develop parsers is called Spirit.Qi.
Spirit.Karma is the component used to develop generators. Namespaces are partitioned accordingly: classes and
functions to develop parsers can be found in boost::spirit::qi and classes and functions to develop genera-
tors can be found in boost::spirit::karma.
Besides Spirit.Qi and Spirit.Karma, the library contains a component called Spirit.Lex, which can be used to de-
velop lexers.
This chapter focuses on developing parsers. The examples mainly use classes and functions from boost::spi
rit and boost::spirit::qi. For these classes and functions, it is sufficient to include the header file boost/
spirit/include/qi.hpp.
If you don't want to include a master header file like boost/spirit/include/qi.hpp, you can include
header files from boost/spirit/include/ individually. It is important to include header files from this
directory only. boost/spirit/include/ is the interface to the user. Header files in other directories can
change in new library versions.

11.1 API
Boost.Spirit provides boost::spirit::qi::parse() and boost::spirit::qi::phrase_parse() to
parse a format.
Example 11.1 Using boost::spirit::qi::parse()

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();

40

http://www.boost.org/libs/spirit

CHAPTER 11. BOOST.SPIRIT 11.1. API

bool match = qi::parse(it, s.end(), ascii::digit);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.1 introduces boost::spirit::qi::parse(). This function expects two iterators of the string be-
ing parsed and a parser. The example uses the parser boost::spirit::ascii::digit, which is provided by
Boost.Spirit. This is one of several character classification parsers. These parsers test whether characters belong
to a certain class. boost::spirit::ascii::digit tests whether a character is a digit between 0 and 9.
The example passes iterators of a string which is read from std::cin. Note that the begin iterator isn’t passed
directly to boost::spirit::qi::parse(). It is stored in the variable it, which is then passed to boost::
spirit::qi::parse(). This is done because boost::spirit::qi::parse() may modify the iterator.
If you type a digit and then Enter, the example displays true. If you type two digits and then Enter, the output
will be true followed by the second digit. If you enter a letter and then Enter, the output will be false fol-
lowed by the letter.
The parser boost::spirit::ascii::digit, as used in Example 11.1, tests exactly one character to see whether
it’s a digit. If the first character is a digit, boost::spirit::qi::parse() returns true – otherwise, it returns
false. The return value of boost::spirit::qi::parse() indicates whether the parser succeeded.
boost::spirit::qi::parse() also returns true if you enter multiple digits. Because the parser boost::
spirit::ascii::digit only tests the first character, it will succeed on such a string. All digits after the first
will be ignored.
To let you determine how much of the string could be parsed successfully, boost::spirit::qi::parse()
changes the iterator it. After a call to boost::spirit::qi::parse(), it refers to the character after the last
one parsed successfully. If you enter multiple digits, it refers to the second digit. If you enter exactly one digit,
it equals the end iterator of s. If you enter a letter, it refers to that letter.
boost::spirit::qi::parse() does not ignore spaces. If you run Example 11.1 and enter a space, false is
displayed. boost::spirit::qi::parse() tests the first entered character, even if that character is a space. If
you want to ignore spaces, use boost::spirit::qi::phrase_parse() instead of boost::spirit::qi::
parse().
Example 11.2 Using boost::spirit::qi::phrase_parse()

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(), ascii::digit, ascii::space);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

boost::spirit::qi::phrase_parse() works like boost::spirit::qi::parse() but expects another
parameter called skipper. The skipper is a parser for characters that should be ignored. Example 11.2 uses boost:
:spirit::ascii::space, a character classification parser to detect spaces, as the skipper.
The skipper boost::spirit::ascii::space discards spaces as delimiters. If you start the example and en-
ter a space followed by a digit, it displays true. Unlike the previous example, the parser boost::spirit::
ascii::digit is not applied to the space, but to the first character that isn’t a space.
Note that this example ignores any number of spaces. Thus, boost::spirit::qi::phrase_parse() returns
true if you enter multiple spaces followed by a digit.
Like boost::spirit::qi::parse(), boost::spirit::qi::phrase_parse() modifies the iterator passed
as the first parameter. That way, you know how far into the string the parser was able to work successfully. Ex-
ample 11.2 skips spaces that occur after successfully parsed characters. If you enter a digit followed by a space
followed by a letter, the iterator will refer to the letter, not the space in front of it. If you want the iterator to refer

41

CHAPTER 11. BOOST.SPIRIT 11.2. PARSERS

to the space, pass boost::spirit::qi::skip_flag::dont_postskip as another parameter to boost::
spirit::qi::phrase_parse().
Example 11.3 phrase_parse() with boost::spirit::qi::skip_flag::dont_postskip

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(), ascii::digit, ascii::space,

qi::skip_flag::dont_postskip);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.3 passes boost::spirit::qi::skip_flag::dont_postskip to boost::spirit::qi::
phrase_parse() to tell the parser not to skip spaces that occur after a successfully parsed digit, but before the
first unsuccessfully parsed character. If you enter a digit followed by a space followed by a letter, it refers to the
space after the call to boost::spirit::qi::phrase_parse().
The flag boost::spirit::qi::skip_flag::postskip is the default value, which is used if neither boost:
:spirit::qi::skip_flag::dont_postskip nor boost::spirit::qi::skip_flag::postskip is
specified.
Example 11.4 boost::spirit::qi::phrase_parse() with wide strings

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::wstring s;
std::getline(std::wcin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(), ascii::digit, ascii::space,

qi::skip_flag::dont_postskip);
std::wcout << std::boolalpha << match << '\n';
if (it != s.end())

std::wcout << std::wstring{it, s.end()} << '\n';
}

boost::spirit::qi::parse() and boost::spirit::qi::phrase_parse() accept iterators to a wide
string. Example 11.4 works like the previous example, except that wide strings are used.
Boost.Spirit also supports the string types std::u16string and std::u32string from the C++11 standard
library.

11.2 Parsers
This section explains how you define parsers. You usually access existing parsers from Boost.Spirit – for exam-
ple, boost::spirit::ascii::digit or boost::spirit::ascii::space. By combining parsers, you can
parse more complex formats. The process is similar to defining regular expressions, which are also built from
basic building blocks.

42

CHAPTER 11. BOOST.SPIRIT 11.2. PARSERS

Example 11.5 tests whether two digits are entered. boost::spirit::qi::phrase_parse() only returns
true if the two digits are consecutive. Spaces are ignored.
As with the previous examples, boost::spirit::ascii::digit is used to recognize digits. Because boost:
:spirit::ascii::digit tests exactly one character, the parser is used twice to test the input for two digits.
To use boost::spirit::ascii::digit twice in a row, an operator has to be used. Boost.Spirit overloads
operator>> for parsers. With ascii::digit >> ascii::digit a parser is created that tests whether a
string contains two digits.
If you run the example and enter two digits, true is displayed. If you enter only one digit, the example displays
false.
Example 11.5 A parser for two consecutive digits

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(), ascii::digit >> ascii::digit,

ascii::space);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Please note that the example also displays true if you enter a space between two digits. Wherever the operator
operator>> is used in a parser, characters are allowed which are ignored by a skipper. Because Example 11.5
uses boost::spirit::ascii::space as the skipper, you may enter as many spaces as you like between the
two digits.
If you want the parser to accept two digits only if they follow each other with no space in between, use boost::
spirit::qi::parse() or the directive boost::spirit::qi::lexeme.
Example 11.6 Parsing character by character with boost::spirit::qi::lexeme

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(),

qi::lexeme[ascii::digit >> ascii::digit], ascii::space);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.6 uses the parser qi::lexeme[ascii::digit >> ascii::digit]. Now, boost::spirit::
qi::phrase_parse() only returns true if the digits have no spaces between them.
boost::spirit::qi::lexeme is one of several directives that can change the behavior of parsers. You use
boost::spirit::qi::lexeme if you want to disallow characters that would be ignored by a skipper when
operator>> is used.
Example 11.7 Boost.Spirit rules similar to regular expressions

#include <boost/spirit/include/qi.hpp>

43

CHAPTER 11. BOOST.SPIRIT 11.3. ACTIONS

#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(), +ascii::digit, ascii::space);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.7 defines a parser with +ascii::digit, which expects at least one digit. This syntax, in particular
the plus sign (+), is similar to that used in regular expressions. The plus sign identifies a character or character
group which is expected to occur in a string at least once. If you start the example and enter at least one digit,
true is displayed. It doesn’t matter whether digits are delimited by spaces. If the parser should accept only digits
without spaces, use boost::spirit::qi::lexeme again.
Example 11.8 Numeric parsers

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(), qi::int_, ascii::space);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.8 expects an integer. boost::spirit::qi::int_ is a numeric parser that can recognize positive
and negative integers. Unlike boost::spirit::ascii::digit, boost::spirit::qi::int_ can recognize
several characters, such as +1 or -23, as integers.
Boost.Spirit provides additional logical parsers. boost::spirit::qi::float_, boost::spirit::qi::dou
ble_, and boost::spirit::qi::bool_ are numeric parsers that can read floating point numbers and boolean
values. With boost::spirit::qi::eol, you can test for an end-of-line character. boost::spirit::qi::
byte_ and boost::spirit::qi::word can be used to read one or two bytes. boost::spirit::qi::word
and other binary parsers recognize the endianness of a platform and parse accordingly. If you want to parse based
on a specific endianness, regardless of the platform, you can use parsers like boost::spirit::qi::little_w
ord and boost::spirit::qi::big_word.

11.3 Actions
So far, the examples in this chapter only detect two things: whether the parser was successful and where the
parse ended. However, parsers normally process data in some way, as you will see in the next examples.
Example 11.9 Linking actions with parsers

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

44

CHAPTER 11. BOOST.SPIRIT 11.3. ACTIONS

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
bool match = qi::phrase_parse(it, s.end(),

qi::int_[([](int i){ std::cout << i << '\n'; })], ascii::space);
std::cout << std::boolalpha << match << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.9 uses boost::spirit::qi::int_ to parse an integer, then writes that integer to standard out-
put. That’s why an action has been linked with boost::spirit::qi::int_. Actions are functions or function
objects that are called when a parser is applied. Linking is done with the operator operator[], which is over-
loaded by boost::spirit::qi::int_ and other parsers. Example 11.9 uses a lambda function as an action
that expects a sole parameter of type int and writes it to standard output.
If you start Example 11.9 and enter a number, the number is displayed.
The type of the parameter passed to an action depends on the parser. For example, boost::spirit::qi::
int_ forwards an int value, while boost::spirit::qi::float_ passes a float value.
Example 11.10 Boost.Spirit with Boost.Phoenix

#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/spirit/include/qi.hpp>
#include <boost/phoenix/phoenix.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;
using boost::phoenix::ref;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
int i;
bool match = qi::phrase_parse(it, s.end(), qi::int_[ref(i) = qi::_1],

ascii::space);
std::cout << std::boolalpha << match << '\n';
if (match)

std::cout << i << '\n';
if (it != s.end())

std::cout << std::string{it, s.end()} << '\n';
}

Example 11.10 uses Boost.Phoenix to store the int value parsed with boost::spirit::qi::int_ in i. If
boost::spirit::qi::phrase_parse() returns true, i is written to standard output.
This example defines the macro BOOST_SPIRIT_USE_PHOENIX_V3 before including the header files from Boost.Spirit.
This macro selects the third and current version of Boost.Phoenix. This is important because Boost.Phoenix was
forked from Boost.Spirit, and Boost.Spirit contains the second version of Boost.Phoenix. If BOOST_SPIRIT_U
SE_PHOENIX_V3 isn’t defined, the second version of Boost.Phoenix will be included through the Boost.Spirit
header files and the third version through boost/phoenix/phoenix.hpp. The different versions will lead
to a compiler error.
Please note how the lambda function is defined in detail. boost::phoenix::ref() creates a reference to the
variable i. However, the placeholder _1 isn’t from Boost.Phoenix, it’s from Boost.Spirit. This is important be-
cause boost::spirit::qi::_1 provides access to the parsed value with the normally expected type – int in
Example 11.10. If the lambda function used boost::phoenix::placeholders::arg1, the compiler would
report an error because boost::phoenix::placeholders::arg1 wouldn’t represent an int; it would be
based on another type from Boost.Spirit, and the int value would need to be extracted.

45

CHAPTER 11. BOOST.SPIRIT 11.4. ATTRIBUTES

The Boost.Spirit documentation contains an overview on tools that support a Boost.Phoenix integration.

11.4 Attributes
Actions are one option to process parsed values. Another option is to pass objects to boost::spirit::qi::
parse() or boost::spirit::qi::phrase_parse() that will be used to store parsed values. These objects
are called attributes. Their types must match the parsers’ types.
You have already used attributes in the previous section. Parameters passed to actions are attributes, too. Every
parser has an attribute. For example, the parser boost::spirit::qi::int_ has an attribute of type int. In
the following examples, attributes aren’t passed as parameters to functions. Instead, parsed values are stored in
attributes and can be processed after boost::spirit::qi::parse() or boost::spirit::qi::phrase_pa
rse() return.
Example 11.11 Storing an int value in an attribute

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
int i;
if (qi::phrase_parse(it, s.end(), qi::int_, ascii::space, i))

std::cout << i << '\n';
}

Example 11.11 uses the parser boost::spirit::qi::int_. The parsed int value is stored in the variable i. i
is passed as another parameter to boost::spirit::qi::phrase_parse() and, thus, becomes an attribute of
the parser boost::spirit::qi::int_.
If you start Example 11.11 and enter a digit, the digit will be written to the standard output stream.
Example 11.12 uses a parser that is defined with qi::int_ % ','. The parser accepts any number of integers
delimited by commas. As usual spaces are ignored.
Because the parser can return multiple int values, the attribute’s type must support storing multiple int values.
The example passes a vector. If you start the example and enter multiple integers delimited by commas, the inte-
gers are written to the standard output stream delimited by semicolons.
Example 11.12 Storing several int values in an attribute

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <vector>
#include <iterator>
#include <algorithm>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
std::vector<int> v;
if (qi::phrase_parse(it, s.end(), qi::int_ % ',', ascii::space, v))
{

std::ostream_iterator<int> out{std::cout, ";"};
std::copy(v.begin(), v.end(), out);

}

46

http://www.boost.org/libs/spirit/doc/html/spirit/qi/quick_reference/phoenix.html

CHAPTER 11. BOOST.SPIRIT 11.5. RULES

}

Instead of a vector, you can also pass containers of other types, such as std::list.
The Boost.Spirit documentation describes which attribute types must be used with which operators.

11.5 Rules
In Boost.Spirit, parsers consist of rules. As rules are typically based on parsers provided by Boost.Spirit, there is
no clear distinction. For example, boost::spirit::ascii::digit can be both a parser and a rule. Typically,
rules refer to more complicated expressions like qi::int_ % ','.
In all of the examples thus far, rules were passed to boost::spirit::qi::parse() or boost::spirit::
qi::phrase_parse() directly. With boost::spirit::qi::rule, Boost.Spirit provides a class to define
rule variables. For example, boost::spirit::qi::rule is required if a rule should be stored in a member
variable of a class.
Example 11.13 Defining rules with boost::spirit::qi::rule

#include <boost/spirit/include/qi.hpp>
#include <string>
#include <vector>
#include <iterator>
#include <algorithm>
#include <iostream>

using namespace boost::spirit;

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
qi::rule<std::string::iterator, std::vector<int>(),

ascii::space_type> values = qi::int_ % ',';
std::vector<int> v;
if (qi::phrase_parse(it, s.end(), values, ascii::space, v))
{

std::ostream_iterator<int> out{std::cout, ";"};
std::copy(v.begin(), v.end(), out);

}
}

Example 11.13 works like Example 11.12. If you enter multiple integers delimited by commas, they are dis-
played with semicolons. In contrast to the previous example, the parser isn’t passed directly to boost::spi
rit::qi::phrase_parse(), but defined in a boost::spirit::qi::rule variable.
boost::spirit::qi::rule is a class template. The only mandatory parameter is the iterator type of the string
being parsed. In the example, two more optional template parameters are also passed.
The second template parameter is std::vector<int>(), which is the signature of a function that returns a vector of
type std::vector<int> and expects no parameter. This template parameter indicates that the type of the attribute
parsed is an int vector.
The third template parameter is the type of the skipper used by boost::spirit::qi::phrase_parse().
In the example, the skipper boost::spirit::ascii::space is used. The type of this skipper is available
through boost::spirit::ascii::space_type and is passed as a template parameter to boost::spirit::
qi::rule.

47

http://www.boost.org/libs/spirit/doc/html/spirit/qi/quick_reference/qi_parsers/operator.html

CHAPTER 11. BOOST.SPIRIT 11.5. RULES

Note

If you want your code to be platform independent and work with a C++11 development
environment, you should prefer boost::spirit::qi::rule over the keyword auto. If
values is defined with auto, the example works as expected with GCC and Clang. How-
ever with Visual C++ 2013, only the first number is parsed and written to standard output.

Example 11.14 Nesting Rules

#include <boost/spirit/include/qi.hpp>
#include <boost/variant.hpp>
#include <string>
#include <vector>
#include <algorithm>
#include <iostream>

using namespace boost::spirit;

struct print : public boost::static_visitor<>
{

template <typename T>
void operator()(T t) const
{

std::cout << std::boolalpha << t << ';';
}

};

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
qi::rule<std::string::iterator, boost::variant<int, bool>(),

ascii::space_type> value = qi::int_ | qi::bool_;
qi::rule<std::string::iterator, std::vector<boost::variant<int, bool>>(),

ascii::space_type> values = value % ',';
std::vector<boost::variant<int, bool>> v;
if (qi::phrase_parse(it, s.end(), values, ascii::space, v))
{

for (const auto &elem : v)
boost::apply_visitor(print{}, elem);

}
}

Example 11.14 defines two rules, one of which refers to the other: values is defined as value % ',', and
value is set to qi::int_ | qi::bool_. values says that any number of values delimited by commas can
be parsed. value defines a value as an integer or bool. Together, the rules say that integers and boolean values
separated with commas can be entered in any order.
To store any number of values, a container of type std::vector is provided. Because the type of the values is
either int or bool, a class is required that can store an int or a bool value. According to the overview on attribute
types and operators, the class boost::variant from Boost.Variant must be used.
If you start the example and enter integers and boolean values delimited by commas, the values are written to the
standard output stream delimited by semicolons. This is accomplished with the help of the function boost::
apply_visitor(), which is provided by Boost.Variant. This function expects a visitor – an object of the class
print in this example.
Please note that boolean values must be entered as true and false.

48

http://www.boost.org/libs/spirit/doc/html/spirit/qi/quick_reference/qi_parsers/operator.html
http://www.boost.org/libs/spirit/doc/html/spirit/qi/quick_reference/qi_parsers/operator.html

CHAPTER 11. BOOST.SPIRIT 11.6. GRAMMAR

11.6 Grammar
If you want to parse complex formats and need to define multiple rules that refer to each other, you can group
them with boost::spirit::qi::grammar.
Example 11.15 works like Example 11.14: you can enter integers and boolean values in any order, delimited
by commas. They will be written to the standard output stream in the same order, but delimited by semicolons.
The example uses the same rules – value and values – as the previous one. However, this time the rules are
grouped in a grammar. The grammar is defined in a class called my_grammar, which is derived from boost::
spirit::qi::grammar.
Both my_grammar and boost::spirit::qi::grammar are class templates. The template parameters ex-
pected by boost::spirit::qi::grammar are the same as those expected by boost::spirit::qi::rule.
The iterator type of the string to be parsed has to be passed to boost::spirit::qi::grammar. You can also
pass the signature of a function that defines the attribute type and the type of the skipper.
In my_grammar, boost::spirit::qi::rule is used to define the rules value and values. The rules are
defined as member variables and are initialized in the constructor.
Please note that the outermost rule has to be passed with base_type to the constructor of the base class. This way,
Boost.Spirit knows which rule is the entry point of the grammar.
Once a grammar is defined, it can be used like a parser. In Example 11.15, my_grammar is instantiated in main()
to create g. g is then passed to boost::spirit::qi::phrase_parse().
Example 11.15 Grouping rules in a grammar

#include <boost/spirit/include/qi.hpp>
#include <boost/variant.hpp>
#include <string>
#include <vector>
#include <iostream>

using namespace boost::spirit;

template <typename Iterator, typename Skipper>
struct my_grammar : qi::grammar<Iterator,

std::vector<boost::variant<int, bool>>(), Skipper>
{

my_grammar() : my_grammar::base_type{values}
{

value = qi::int_ | qi::bool_;
values = value % ',';

}

qi::rule<Iterator, boost::variant<int, bool>(), Skipper> value;
qi::rule<Iterator, std::vector<boost::variant<int, bool>>(), Skipper>

values;
};

struct print : public boost::static_visitor<>
{

template <typename T>
void operator()(T t) const
{

std::cout << std::boolalpha << t << ';';
}

};

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
my_grammar<std::string::iterator, ascii::space_type> g;
std::vector<boost::variant<int, bool>> v;
if (qi::phrase_parse(it, s.end(), g, ascii::space, v))
{

49

CHAPTER 11. BOOST.SPIRIT 11.6. GRAMMAR

for (const auto &elem : v)
boost::apply_visitor(print{}, elem);

}
}

Example 11.16 Storing parsed values in structures

#include <boost/spirit/include/qi.hpp>
#include <boost/variant.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <string>
#include <vector>
#include <iostream>

using namespace boost::spirit;

typedef boost::variant<int, bool> int_or_bool;

struct int_or_bool_values
{

int_or_bool first;
std::vector<int_or_bool> others;

};

BOOST_FUSION_ADAPT_STRUCT(
int_or_bool_values,
(int_or_bool, first)
(std::vector<int_or_bool>, others)

)

template <typename Iterator, typename Skipper>
struct my_grammar : qi::grammar<Iterator, int_or_bool_values(), Skipper>
{

my_grammar() : my_grammar::base_type{values}
{

value = qi::int_ | qi::bool_;
values = value >> ',' >> value % ',';

}

qi::rule<Iterator, int_or_bool(), Skipper> value;
qi::rule<Iterator, int_or_bool_values(), Skipper> values;

};

struct print : public boost::static_visitor<>
{

template <typename T>
void operator()(T t) const
{

std::cout << std::boolalpha << t << ';';
}

};

int main()
{

std::string s;
std::getline(std::cin, s);
auto it = s.begin();
my_grammar<std::string::iterator, ascii::space_type> g;
int_or_bool_values v;
if (qi::phrase_parse(it, s.end(), g, ascii::space, v))
{

print p;
boost::apply_visitor(p, v.first);
for (const auto &elem : v.others)

50

CHAPTER 11. BOOST.SPIRIT 11.6. GRAMMAR

boost::apply_visitor(p, elem);
}

}

Example 11.16 is based on the previous example, but expects at least two values. The rule values is defined as
value >> ',' >> value % ','.
The first component in values is value, and the second one is value % ','. The value parsed by the first
component has to be stored in an object of type boost::variant. The values parsed by the second component
have to be stored in a container. With int_or_bool_values, the example provides a structure to store values
parsed by both components of the rule values.
To use int_or_bool_values with Boost.Spirit, the macro BOOST_FUSION_ADAPT_STRUCT must be used.
This macro is provided by Boost.Fusion. This macro makes it possible to treat int_or_bool_values like a
tuple with two values of type int_or_bool and std::vector<int_or_bool>. Because this tuple has the right number
of values with the right types, it is possible to define values with the signature int_or_bool_values(). val
ues will store the first parsed value in first and all other parsed values in others.
An object of type int_or_bool_values is passed to boost::spirit::qi::phrase_parse() as an at-
tribute. If you start the example and enter at least two integers or boolean values delimited by commas, they are
all stored in the attribute and written to the standard output stream.

Note

The parser has been changed from what was used in the previous example. If values
was defined with value % ',', int_or_bool_values would have only one member
variable, and all parsed values could be stored in a vector, as in the previous example.
Thus, int_or_bool_values would be like a tuple with only one value – which Boost.Spirit
doesn’t support. Structures with only one member variable will cause a compiler error.
There are various workarounds for that problem.

51

http://stackoverflow.com/questions/19823413/spirit-qi-attribute-propagation-issue-with-single-member-struct

Part III

Containers

52

Containers are one of the most useful data structures in C++. The standard library provides many containers, and
the Boost libraries provide even more.

• Boost.MultiIndex goes one step further: the containers from this library can support multiple interfaces
from other containers at the same time. Containers from Boost.MultiIndex are like merged containers and
provide the advantages of all of the containers they have been merged with.

• Boost.Bimap is based on Boost.MultiIndex. It provides a container similar to std::unordered_map,
except the elements can be looked up from both sides. Thus, depending on how the container is accessed,
either side can be the key. When one side is the key, the other side is the value.

• Boost.Array and Boost.Unordered define the classes boost::array, boost::unordered_set, and
boost::unordered_map, which were added to the standard library with C++11.

• Boost.CircularBuffer provides a container whose most important property is that it will overwrite the first
element in the buffer when a value is added to a full circular buffer.

• Boost.Heap provides variants of priority queues – classes that resemble std::priority_queue.

• Boost.Intrusive lets you create containers that, unlike the containers from the standard library, neither copy
nor move objects. However, to add an object to an intrusive list, the object’s type must meet certain re-
quirements.

• Boost.MultiArray tries to simplify the use of multidimensional arrays. For example, it’s possible to treat
part of a multidimensional array as a separate array.

• Boost.Container is a library that defines the same containers as the standard library. Using Boost.Container
can make sense if, for example, you need to support a program on multiple platforms and you want to
avoid problems caused by implementation-specific differences in the standard library.

53

Chapter 12

Boost.MultiIndex

Boost.MultiIndex makes it possible to define containers that support an arbitrary number of interfaces. While
std::vector provides an interface that supports direct access to elements with an index and std::set pro-
vides an interface that sorts elements, Boost.MultiIndex lets you define containers that support both interfaces.
Such a container could be used to access elements using an index and in a sorted fashion.
Boost.MultiIndex can be used if elements need to be accessed in different ways and would normally need to be
stored in multiple containers. Instead of having to store elements in both a vector and a set and then synchroniz-
ing the containers continuously, you can define a container with Boost.MultiIndex that provides a vector inter-
face and a set interface.
Boost.MultiIndex also makes sense if you need to access elements based on multiple different properties. In Ex-
ample 12.1, animals are looked up by name and by number of legs. Without Boost.MultiIndex, two hash contain-
ers would be required – one to look up animals by name and the other to look them up by number of legs.
When you use Boost.MultiIndex, the first step is to define a new container. You have to decide which interfaces
your new container should support and which element properties it should access.
The class boost::multi_index::multi_index_container, which is defined in boost/multi_index_
container.hpp, is used for every container definition. This is a class template that requires at least two pa-
rameters. The first parameter is the type of elements the container should store – in Example 12.1 this is a user-
defined class called animal. The second parameter is used to denote different indexes the container should pro-
vide.
Example 12.1 Using boost::multi_index::multi_index_container

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/member.hpp>
#include <string>
#include <iostream>

using namespace boost::multi_index;

struct animal
{

std::string name;
int legs;

};

typedef multi_index_container<
animal,
indexed_by<

hashed_non_unique<
member<

animal, std::string, &animal::name
>

>,
hashed_non_unique<

member<
animal, int, &animal::legs

>
>

54

http://www.boost.org/libs/multi_index

CHAPTER 12. BOOST.MULTIINDEX

>
> animal_multi;

int main()
{

animal_multi animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

std::cout << animals.count("cat") << '\n';

const animal_multi::nth_index<1>::type &legs_index = animals.get<1>();
std::cout << legs_index.count(8) << '\n';

}

The key advantage of containers based on Boost.MultiIndex is that you can access elements via different inter-
faces. When you define a new container, you can specify the number and type of interfaces. The container in
Example 12.1 needs to support searching for animals by name or number of legs, so two interfaces are defined.
Boost.MultiIndex calls these interfaces indexes – that’s where the library’s name comes from.
Interfaces are defined with the help of the class boost::multi_index::indexed_by. Each interface is passed
as a template parameter. Two interfaces of type boost::multi_index::hashed_non_unique, which is de-
fined in boost/multi_index/hashed_index.hpp, are used in Example 12.1. Using these interfaces
makes the container behave like std::unordered_set and look up values using a hash value.
The class boost::multi_index::hashed_non_unique is a template as well and expects as its sole param-
eter a class that calculates hash values. Because both interfaces of the container need to look up animals, one
interface calculates hash values for the name, while the other interface does so for the number of legs.
Boost.MultiIndex offers the helper class template boost::multi_index::member, which is defined in boost/
multi_index/member.hpp, to access a member variable. As seen in Example 12.1, several parameters
have been specified to let boost::multi_index::member know which member variable of animal should
be accessed and which type the member variable has.
Even though the definition of animal_multi looks complicated at first, the class works like a map. The name
and number of legs of an animal can be regarded as a key/value pair. The advantage of the container animal_
multi over a map like std::unordered_map is that animals can be looked up by name or by number of legs.
animal_multi supports two interfaces, one based on the name and one based on the number of legs. The inter-
face determines which member variable is the key and which member variable is the value.
To access a MultiIndex container, you need to select an interface. If you directly access the object animals us-
ing insert() or count(), the first interface is used. In Example 12.1, this is the hash container for the member
variable name. If you need a different interface, you must explicitly select it.
Interfaces are numbered consecutively, starting at index 0 for the first interface. To access the second interface –
as shown in Example 12.1 – call the member function get() and pass in the index of the desired interface as the
template parameter.
The return value of get() looks complicated. It accesses a class of the MultiIndex container called nth_index
which, again, is a template. The index of the interface to be used must be specified as a template parameter. This
index must be the same as the one passed to get(). The final step is to access the type definition named type of
nth_index. The value of type represents the type of the corresponding interface. The following examples use
the keyword auto to simplify the code.
Although you do not need to know the specifics of an interface, since they are automatically derived from nth
_index and type, you should still understand what kind of interface is accessed. Since interfaces are numbered
consecutively in the container definition, this can be answered easily, since the index is passed to both get() and
nth_index. Thus, legs_index is a hash interface that looks up animals by legs.
Because data such as names and legs can be keys of the MultiIndex container, they cannot be arbitrarily changed.
If the number of legs is changed after an animal has been looked up by name, an interface using legs as a key
would be unaware of the change and would not know that a new hash value needs to be calculated.
Example 12.2 Changing elements in a MultiIndex container with modify()

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/member.hpp>
#include <string>

55

CHAPTER 12. BOOST.MULTIINDEX

#include <iostream>

using namespace boost::multi_index;

struct animal
{

std::string name;
int legs;

};

typedef multi_index_container<
animal,
indexed_by<

hashed_non_unique<
member<

animal, std::string, &animal::name
>

>,
hashed_non_unique<

member<
animal, int, &animal::legs

>
>

>
> animal_multi;

int main()
{

animal_multi animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

auto &legs_index = animals.get<1>();
auto it = legs_index.find(4);
legs_index.modify(it, [](animal &a){ a.name = "dog"; });

std::cout << animals.count("dog") << '\n';
}

Just as the keys in a container of type std::unordered_map cannot be modified, neither can data stored within
a MultiIndex container. Strictly speaking, all data stored in a MultiIndex container is constant. This includes
member variables that aren’t used by any interface. Even if no interface accesses legs, legs cannot be changed.
To avoid having to remove elements from a MultiIndex container and insert new ones, Boost.MultiIndex pro-
vides member functions to change values directly. Because these member functions operate on the MultiIndex
container itself, and because no element in a container is modified directly, all interfaces will be notified and can
calculate new hash values.
Every interface offered by Boost.MultiIndex provides the member function modify(), which operates directly
on the container. The object to be modified is identified through an iterator passed as the first parameter to mod
ify(). The second parameter is a function or function object that expects as its sole parameter an object of the
type stored in the container. The function or function object can change the element as much as it wants. Exam-
ple 12.2 illustrates how to use the member function modify() to change an element.
So far, only one interface has been introduced: boost::multi_index::hashed_non_unique, which calcu-
lates a hash value that does not have to be unique. In order to guarantee that no value is stored twice, use boost:
:multi_index::hashed_unique. Please note that values cannot be stored if they don’t satisfy the require-
ments of all interfaces of a particular container. If one interface does not allow you to store values multiple times,
it does not matter whether another interface does allow it.
Example 12.3 A MultiIndex container with boost::multi_index::hashed_unique

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/member.hpp>

56

CHAPTER 12. BOOST.MULTIINDEX

#include <string>
#include <iostream>

using namespace boost::multi_index;

struct animal
{

std::string name;
int legs;

};

typedef multi_index_container<
animal,
indexed_by<

hashed_non_unique<
member<

animal, std::string, &animal::name
>

>,
hashed_unique<

member<
animal, int, &animal::legs

>
>

>
> animal_multi;

int main()
{

animal_multi animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"dog", 4});

auto &legs_index = animals.get<1>();
std::cout << legs_index.count(4) << '\n';

}

The container in Example 12.3 uses boost::multi_index::hashed_unique as the second interface. That
means no two animals with the same number of legs can be stored in the container because the hash values would
be the same.
The example tries to store a dog, which has the same number of legs as the already stored cat. Because this vio-
lates the requirement of having unique hash values for the second interface, the dog will not be stored in the con-
tainer. Therefore, when searching for animals with four legs, the program displays 1, because only the cat was
stored and counted.
Example 12.4 introduces the last three interfaces of Boost.MultiIndex: boost::multi_index::sequenced,
boost::multi_index::ordered_non_unique , and boost::multi_index::random_access.
The interface boost::multi_index::sequenced allows you to treat a MultiIndex container like a list of type
std::list. Elements are stored in the given order.
With the interface boost::multi_index::ordered_non_unique, objects are automatically sorted. This in-
terface requires that you specify a sorting criterion when defining the container. Example 12.4 sorts objects of
type animal by the number of legs using the helper class boost::multi_index::member.
boost::multi_index::ordered_non_unique provides special member functions to find specific ranges
within the sorted values. Using lower_bound() and upper_bound(), the program searches for animals that
have at least four and no more than eight legs. Because they require elements to be sorted, these member func-
tions are not provided by other interfaces.
The final interface introduced is boost::multi_index::random_access, which allows you to treat the Mul-
tiIndex container like a vector of type std::vector. The two most prominent member functions are operato
r[] and at().
boost::multi_index::random_access includes boost::multi_index::sequenced. With boost::
multi_index::random_access, all member functions of boost::multi_index::sequenced are available

57

CHAPTER 12. BOOST.MULTIINDEX

as well.
Example 12.4 The interfaces sequenced, ordered_non_unique and random_access

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/sequenced_index.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/random_access_index.hpp>
#include <boost/multi_index/member.hpp>
#include <string>
#include <iostream>

using namespace boost::multi_index;

struct animal
{

std::string name;
int legs;

};

typedef multi_index_container<
animal,
indexed_by<

sequenced<>,
ordered_non_unique<

member<
animal, int, &animal::legs

>
>,
random_access<>

>
> animal_multi;

int main()
{

animal_multi animals;

animals.push_back({"cat", 4});
animals.push_back({"shark", 0});
animals.push_back({"spider", 8});

auto &legs_index = animals.get<1>();
auto it = legs_index.lower_bound(4);
auto end = legs_index.upper_bound(8);
for (; it != end; ++it)

std::cout << it->name << '\n';

const auto &rand_index = animals.get<2>();
std::cout << rand_index[0].name << '\n';

}

Example 12.5 The key extractors identity and const_mem_fun

#include <boost/multi_index_container.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/identity.hpp>
#include <boost/multi_index/mem_fun.hpp>
#include <string>
#include <utility>
#include <iostream>

using namespace boost::multi_index;

class animal
{

58

CHAPTER 12. BOOST.MULTIINDEX

public:
animal(std::string name, int legs) : name_{std::move(name)},

legs_(legs) {}
bool operator<(const animal &a) const { return legs_ < a.legs_; }
const std::string &name() const { return name_; }

private:
std::string name_;
int legs_;

};

typedef multi_index_container<
animal,
indexed_by<

ordered_unique<
identity<animal>

>,
hashed_unique<

const_mem_fun<
animal, const std::string&, &animal::name

>
>

>
> animal_multi;

int main()
{

animal_multi animals;

animals.emplace("cat", 4);
animals.emplace("shark", 0);
animals.emplace("spider", 8);

std::cout << animals.begin()->name() << '\n';

const auto &name_index = animals.get<1>();
std::cout << name_index.count("shark") << '\n';

}

Now that we’ve covered the four interfaces of Boost.MultiIndex, the remainder of this chapter focuses on key
extractors. One of the key extractors has already been introduced: boost::multi_index::member, which is
defined in boost/multi_index/member.hpp. This helper class is called a key extractor because it allows
you to specify which member variable of a class should be used as the key of an interface.
Example 12.5 introduces two more key extractors.
The key extractor boost::multi_index::identity, defined in boost/multi_index/identity.hpp,
uses elements stored in the container as keys. This requires the class animal to be sortable because objects of
type animal will be used as the key for the interface boost::multi_index::ordered_unique. In Exam-
ple 12.5, this is achieved through the overloaded operator<.
The header file boost/multi_index/mem_fun.hpp defines two key extractors – boost::multi_in
dex::const_mem_fun and boost::multi_index::mem_fun – that use the return value of a member func-
tion as a key. In Example 12.5, the return value of name() is used that way. boost::multi_index::const
_mem_fun is used for constant member functions, while boost::multi_index::mem_fun is used for non-
constant member functions.
Boost.MultiIndex offers two more key extractors: boost::multi_index::global_fun and boost::multi
_index::composite_key. The former can be used for free-standing or static member functions, and the latter
allows you to design a key extractor made up of several other key extractors.

59

Chapter 13

Boost.Bimap

The library Boost.Bimap is based on Boost.MultiIndex and provides a container that can be used immediately
without being defined first. The container is similar to std::map, but supports looking up values from either
side. Boost.Bimap allows you to create maps where either side can be the key, depending on how you access the
map. When you access the left side as the key, the right side is the value, and vice versa.
Example 13.1 Using boost::bimap

#include <boost/bimap.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::bimap<std::string, int> bimap;
bimap animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

std::cout << animals.left.count("cat") << '\n';
std::cout << animals.right.count(8) << '\n';

}

boost::bimap is defined in boost/bimap.hpp and provides two member variables, left and right,
which can be used to access the two containers of type std::map that are unified by boost::bimap. In Ex-
ample 13.1, left uses keys of type std::string to access the container, and right uses keys of type int.
Besides supporting access to individual records using a left or right container, boost::bimap allows you to
view records as relations (see Example 13.2).
Example 13.2 Accessing relations

#include <boost/bimap.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::bimap<std::string, int> bimap;
bimap animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

for (auto it = animals.begin(); it != animals.end(); ++it)
std::cout << it->left << " has " << it->right << " legs\n";

}

60

http://www.boost.org/libs/bimap

CHAPTER 13. BOOST.BIMAP

It is not necessary to access records using left or right. By iterating over records, the left and right parts of an
individual record are made available through the iterator.
Example 13.3 Using boost::bimaps::set_of explicitly

#include <boost/bimap.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::bimap<boost::bimaps::set_of<std::string>,
boost::bimaps::set_of<int>> bimap;

bimap animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

std::cout << animals.left.count("spider") << '\n';
std::cout << animals.right.count(8) << '\n';

}

While std::map is accompanied by a container called std::multimap, which can store multiple records using
the same key, there is no such equivalent for boost::bimap. However, this does not mean that storing multiple
records with the same key inside a container of type boost::bimap is impossible. Strictly speaking, the two re-
quired template parameters specify container types for left and right, not the types of the elements to store. If
no container type is specified, the container type boost::bimaps::set_of is used by default. This container,
like std::map, only accepts records with unique keys.
Example 13.3 specifies boost::bimaps::set_of.
Other container types besides boost::bimaps::set_of can be used to customize boost::bimap.
Example 13.4 Allowing duplicates with boost::bimaps::multiset_of

#include <boost/bimap.hpp>
#include <boost/bimap/multiset_of.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::bimap<boost::bimaps::set_of<std::string>,
boost::bimaps::multiset_of<int>> bimap;

bimap animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"dog", 4});

std::cout << animals.left.count("dog") << '\n';
std::cout << animals.right.count(4) << '\n';

}

Example 13.4 uses the container type boost::bimaps::multiset_of, which is defined in boost/bimap/
multiset_of.hpp. It works like boost::bimaps::set_of, except that keys don’t need to be unique. Ex-
ample 13.4 will successfully display 2 when searching for animals with four legs.
Because boost::bimaps::set_of is used by default for containers of type boost::bimap, the header file
boost/bimap/set_of.hpp does not need to be included explicitly. However, when using other container
types, the corresponding header files must be included.
In addition to the classes shown above, Boost.Bimap provides the following: boost::bimaps::unordered_
set_of, boost::bimaps::unordered_multiset_of, boost::bimaps::list_of, boost::bimaps::
vector_of, and boost::bimaps::unconstrained_set_of. Except for boost::bimaps::unconstrain
ed_set_of, all of the other container types operate just like their counterparts from the standard library.

61

CHAPTER 13. BOOST.BIMAP

Example 13.5 Disabling one side with boost::bimaps::unconstrained_set_of

#include <boost/bimap.hpp>
#include <boost/bimap/unconstrained_set_of.hpp>
#include <boost/bimap/support/lambda.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::bimap<std::string,
boost::bimaps::unconstrained_set_of<int>> bimap;

bimap animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

auto it = animals.left.find("cat");
animals.left.modify_key(it, boost::bimaps::_key = "dog");

std::cout << it->first << '\n';
}

boost::bimaps::unconstrained_set_of can be used to disable one side of boost::bimap. In Exam-
ple 13.5, boost::bimap behaves like std::map. You can’t access right to search for animals by legs.
Example 13.5 illustrates another reason why it can make sense to prefer boost::bimap over std::map. Since
Boost.Bimap is based on Boost.MultiIndex, member functions from Boost.MultiIndex are available. Exam-
ple 13.5 modifies a key using modify_key() – something that is not possible with std::map.
Note how the key is modified. A new value is assigned to the current key using boost::bimaps::_key, which
is a placeholder that is defined in boost/bimap/support/lambda.hpp.
boost/bimap/support/lambda.hpp also defines boost::bimaps::_data. When calling the mem-
ber function modify_data(), boost::bimaps::_data can be used to modify a value in a container of type
boost::bimap.

62

Chapter 14

Boost.Array

The library Boost.Array defines the class template boost::array in boost/array.hpp. boost::array is
similar to std::array, which was added to the standard library with C++11. You can ignore boost::array if
you work with a C++11 development environment.
Example 14.1 Various member functions of boost::array

#include <boost/array.hpp>
#include <string>
#include <algorithm>
#include <iostream>

int main()
{

typedef boost::array<std::string, 3> array;
array a;

a[0] = "cat";
a.at(1) = "shark";
*a.rbegin() = "spider";

std::sort(a.begin(), a.end());

for (const std::string &s : a)
std::cout << s << '\n';

std::cout << a.size() << '\n';
std::cout << a.max_size() << '\n';

}

With boost::array, an array can be created that exhibits the same properties as a C array. In addition, boost:
:array conforms to the requirements of C++ containers, which makes handling such an array as easy as han-
dling any other container. In principle, one can think of boost::array as the container std::vector, except
the number of elements in boost::array is constant.
As seen in Example 14.1, using boost::array is fairly simple and needs no additional explanation since the
member functions called have the same meaning as their counterparts from std::vector.

63

http://www.boost.org/libs/array/

Chapter 15

Boost.Unordered

Boost.Unordered provides the classes boost::unordered_set, boost::unordered_multiset, boost::
unordered_map, and boost::unordered_multimap. These classes are identical to the hash containers that
were added to the standard library with C++11. Thus, you can ignore the containers from Boost.Unordered if you
work with a development environment supporting C++11.
Example 15.1 Using boost::unordered_set

#include <boost/unordered_set.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::unordered_set<std::string> unordered_set;
unordered_set set;

set.emplace("cat");
set.emplace("shark");
set.emplace("spider");

for (const std::string &s : set)
std::cout << s << '\n';

std::cout << set.size() << '\n';
std::cout << set.max_size() << '\n';

std::cout << std::boolalpha << (set.find("cat") != set.end()) << '\n';
std::cout << set.count("shark") << '\n';

}

boost::unordered_set can be replaced with std::unordered_set in Example 15.1. boost::unordered
_set doesn’t differ from std::unordered_set.
Example 15.2 Using boost::unordered_map

#include <boost/unordered_map.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::unordered_map<std::string, int> unordered_map;
unordered_map map;

map.emplace("cat", 4);
map.emplace("shark", 0);
map.emplace("spider", 8);

for (const auto &p : map)
std::cout << p.first << ";" << p.second << '\n';

64

http://www.boost.org/libs/unordered

CHAPTER 15. BOOST.UNORDERED

std::cout << map.size() << '\n';
std::cout << map.max_size() << '\n';

std::cout << std::boolalpha << (map.find("cat") != map.end()) << '\n';
std::cout << map.count("shark") << '\n';

}

Example 15.2 uses boost::unordered_map to store the names and the number of legs for several animals.
Once again, boost::unordered_map could be replaced with std::unordered_map.
In Example 15.3 elements of type animal are stored in a container of type boost::unordered_set. Because
the hash function of boost::unordered_set doesn’t know the class animal, hash values can’t be automati-
cally calculated for elements of this type. That’s why a hash function must be defined – otherwise the example
can’t be compiled.
The name of the hash function to define is hash_value(). It must expect as its sole parameter an object of the
type the hash value should be calculated for. The type of the return value of hash_value() must be std::size_t.
The function hash_value() is automatically called when the hash value has to be calculated for an object. This
function is defined for various types in the Boost libraries, including std::string. For user-defined types like
animal, it must be defined by the developer.
Usually, the definition of hash_value() is rather simple: Hash values are created by accessing the member
variables of an object one after another. This is done with the function boost::hash_combine(), which is
provided by Boost.Hash and defined in boost/functional/hash.hpp. You don’t have to include this
header file if you use Boost.Unordered because all containers from this library access Boost.Hash to calculate
hash values.
Example 15.3 User-defined type with Boost.Unordered

#include <boost/unordered_set.hpp>
#include <string>
#include <cstddef>

struct animal
{

std::string name;
int legs;

};

bool operator==(const animal &lhs, const animal &rhs)
{

return lhs.name == rhs.name && lhs.legs == rhs.legs;
}

std::size_t hash_value(const animal &a)
{

std::size_t seed = 0;
boost::hash_combine(seed, a.name);
boost::hash_combine(seed, a.legs);
return seed;

}

int main()
{

typedef boost::unordered_set<animal> unordered_set;
unordered_set animals;

animals.insert({"cat", 4});
animals.insert({"shark", 0});
animals.insert({"spider", 8});

}

In addition to defining hash_value(), you need to make sure two objects can be compared using ==. That’s
why the operator operator== is overloaded for animal in Example 15.3.
The hash containers from the C++11 standard library use a hash function from the header file functional.

65

CHAPTER 15. BOOST.UNORDERED

The hash containers from Boost.Unordered expect the hash function hash_value(). Whether you use Boost.Hash
within hash_value() doesn’t matter. Boost.Hash makes sense because functions like boost::hash_comb
ine() make it easier to calculate hash values from multiple member variables step by step. However, this is only
an implementation detail of hash_value(). Apart from the different hash functions used, the hash containers
from Boost.Unordered and the standard library are basically equivalent.

66

Chapter 16

Boost.CircularBuffer

The library Boost.CircularBuffer provides a circular buffer, which is a container with the following two funda-
mental properties:

• The capacity of the circular buffer is constant and set by you. The capacity doesn’t change automatically
when you call a member function such as push_back(). Only you can change the capacity of the circular
buffer. The size of the circular buffer can not exceed the capacity you set.

• Despite constant capacity, you can call push_back() as often as you like to insert elements into the circu-
lar buffer. If the maximum size has been reached and the circular buffer is full, elements are overwritten.

A circular buffer makes sense when the amount of available memory is limited, and you need to prevent a con-
tainer from growing arbitrarily big. Another example is continuous data flow where old data becomes irrelevant
as new data becomes available. Memory is automatically reused by overwriting old data.
To use the circular buffer from Boost.CircularBuffer, include the header file boost/circular_buffer.
hpp. This header file defines the class boost::circular_buffer.
boost::circular_buffer is a template and must be instantiated with a type. For instance, the circular buffer
cb in Example 16.1 stores numbers of type int.
The capacity of the circular buffer is specified when instantiating the class, not through a template parameter.
The default constructor of boost::circular_buffer creates a buffer with a capacity of zero elements. An-
other constructor is available to set the capacity. In Example 16.1, the buffer cb has a capacity of three elements.
Example 16.1 Using boost::circular_buffer

#include <boost/circular_buffer.hpp>
#include <iostream>

int main()
{

typedef boost::circular_buffer<int> circular_buffer;
circular_buffer cb{3};

std::cout << cb.capacity() << '\n';
std::cout << cb.size() << '\n';

cb.push_back(0);
cb.push_back(1);
cb.push_back(2);

std::cout << cb.size() << '\n';

cb.push_back(3);
cb.push_back(4);
cb.push_back(5);

std::cout << cb.size() << '\n';

for (int i : cb)
std::cout << i << '\n';

}

67

http://www.boost.org/libs/circular_buffer

CHAPTER 16. BOOST.CIRCULARBUFFER

The capacity of a circular buffer can be queried by calling capacity(). In Example 16.1, capacity() will
return 3.
The capacity is not equivalent to the number of stored elements. While the return value of capacity() is con-
stant, size() returns the number of elements in the buffer, which may be different. The return value of size()
will always be between 0 and the capacity of the circular buffer.
Example 16.1 returns 0 the first time size() is called since the buffer does not contain any data. After calling
push_back() three times, the buffer contains three elements, and the second call to size() will return 3. Call-
ing push_back() again does not cause the buffer to grow. The three new numbers overwrite the previous three.
Therefore, size() will return 3 when called for the third time.
As a verification, the stored numbers are written to standard output at the end of Example 16.1. The output con-
tains the numbers 3, 4, and 5 since the previously stored numbers have been overwritten.
Example 16.2 Various member functions of boost::circular_buffer
#include <boost/circular_buffer.hpp>
#include <iostream>

int main()
{

typedef boost::circular_buffer<int> circular_buffer;
circular_buffer cb{3};

cb.push_back(0);
cb.push_back(1);
cb.push_back(2);
cb.push_back(3);

std::cout << std::boolalpha << cb.is_linearized() << '\n';

circular_buffer::array_range ar1, ar2;

ar1 = cb.array_one();
ar2 = cb.array_two();
std::cout << ar1.second << ";" << ar2.second << '\n';

for (int i : cb)
std::cout << i << '\n';

cb.linearize();

ar1 = cb.array_one();
ar2 = cb.array_two();
std::cout << ar1.second << ";" << ar2.second << '\n';

}

Example 16.2 uses the member functions is_linearized(), array_one(), array_two() and linearize(),
which do not exist in other containers. These member functions clarify the internals of the circular buffer.
A circular buffer is essentially comparable to std::vector. Because the beginning and end are well defined, a
vector can be treated as a conventional C array. That is, memory is contiguous, and the first and last elements are
always at the lowest and highest memory address. However, a circular buffer does not offer such a guarantee.
Even though it may sound strange to talk about the beginning and end of a circular buffer, they do exist. Ele-
ments can be accessed via iterators, and boost::circular_buffer provides member functions such as be-
gin() and end(). While you don’t need to be concerned about the position of the beginning and end when us-
ing iterators, the situation becomes a bit more complicated when accessing elements using regular pointers, un-
less you use is_linearized(), array_one(), array_two(), and linearize().
The member function is_linearized() returns true if the beginning of the circular buffer is at the lowest
memory address. In this case, all the elements in the buffer are stored consecutively from beginning to the end at
increasing memory addresses, and elements can be accessed like a conventional C array.
If is_linearized() returns false, the beginning of the circular buffer is not at the lowest memory address,
which is the case in Example 16.2. While the first three elements 0, 1, and 2 are stored in exactly this order, call-
ing push_back() for the fourth time will overwrite the number 0 with the number 3. Because 3 is the last ele-
ment added by a call to push_back(), it is now the new end of the circular buffer. The beginning is now the el-

68

CHAPTER 16. BOOST.CIRCULARBUFFER

ement with the number 1, which is stored at the next higher memory address. This means elements are no longer
stored consecutively at increasing memory addresses.
If the end of the circular buffer is at a lower memory address than the beginning, the elements can be accessed
via two conventional C arrays. To avoid the need to calculate the position and size of each array, boost::circu
lar_buffer provides the member functions array_one() and array_two().
Both array_one() and array_two() return a std::pair whose first element is a pointer to the correspond-
ing array and whose second element is the size. array_one() accesses the array at the beginning of the circular
buffer, and array_two() accesses the array at the end of the buffer.
If the circular buffer is linearized and is_linearized() returns true, array_two() can be called, too. How-
ever, since there is only one array in the buffer, the second array contains no elements.
To simplify matters and treat the circular buffer as a conventional C array, you can force a rearrangement of the
elements by calling linearize(). Once complete, you can access all stored elements using array_one(), and
you don’t need to use array_two().
Boost.CircularBuffer offers an additional class called boost::circular_buffer_space_optimized. This
class is also defined in boost/circular_buffer.hpp. Although this class is used in the same way as
boost::circular_buffer, it does not reserve any memory at instantiation. Rather, memory is allocated dy-
namically when elements are added until the capacity is reached. Removing elements releases memory accord-
ingly. boost::circular_buffer_space_optimized manages memory more efficiently and, therefore, can
be a better choice in certain scenarios. For example, it may be a good choice if you need a circular buffer with a
large capacity, but your program doesn’t always use the full buffer.

69

Chapter 17

Boost.Heap

Boost.Heap could have also been called Boost.PriorityQueue since the library provides several priority queues.
However, the priority queues in Boost.Heap differ from std::priority_queue by supporting more functions.
Example 17.1 Using boost::heap::priority_queue

#include <boost/heap/priority_queue.hpp>
#include <iostream>

using namespace boost::heap;

int main()
{

priority_queue<int> pq;
pq.push(2);
pq.push(3);
pq.push(1);

for (int i : pq)
std::cout << i << '\n';

priority_queue<int> pq2;
pq2.push(4);
std::cout << std::boolalpha << (pq > pq2) << '\n';

}

Example 17.1 uses the class boost::heap::priority_queue, which is defined in boost/heap/priority_
queue.hpp. In general this class behaves like std::priority_queue, except it allows you to iterate over el-
ements. The order of elements returned in the iteration is random.
Objects of type boost::heap::priority_queue can be compared with each other. The comparison in Exam-
ple 17.1 returns true because pq has more elements than pq2. If both queues had the same number of elements,
the elements would be compared in pairs.
Example 17.2 Using boost::heap::binomial_heap

#include <boost/heap/binomial_heap.hpp>
#include <iostream>

using namespace boost::heap;

int main()
{

binomial_heap<int> bh;
bh.push(2);
bh.push(3);
bh.push(1);

binomial_heap<int> bh2;
bh2.push(4);
bh.merge(bh2);

70

http://www.boost.org/libs/heap

CHAPTER 17. BOOST.HEAP

for (auto it = bh.ordered_begin(); it != bh.ordered_end(); ++it)
std::cout << *it << '\n';

std::cout << std::boolalpha << bh2.empty() << '\n';
}

Example 17.2 introduces the class boost::heap::binomial_heap. In addition to allowing you to iterate over
elements in priority order, it also lets you merge priority queues. Elements from one queue can be added to an-
other queue.
The example calls merge() on the queue bh. The queue bh2 is passed as a parameter. The call to merge()
moves the number 4 from bh2 to bh. After the call, bh contains four numbers, and bh2 is empty.
The for loop calls ordered_begin() and ordered_end() on bh. ordered_begin() returns an iterator that
iterates from high priority elements to low priority elements. Thus, Example 17.2 writes the numbers 4, 3, 2, and
1 in order to standard output.
boost::heap::binomial_heap lets you change elements after they have been added to the queue. Exam-
ple 17.3 saves a handle returned by push(), making it possible to access the number 2 stored in bh.
update() is a member function of boost::heap::binomial_heap that can be called to change an element.
Example 17.3 calls the member function to replace 2 with 4. Afterwards, the element with the highest priority,
now 4, is fetched with top().
Example 17.3 Changing elements in boost::heap::binomial_heap

#include <boost/heap/binomial_heap.hpp>
#include <iostream>

using namespace boost::heap;

int main()
{

binomial_heap<int> bh;
auto handle = bh.push(2);
bh.push(3);
bh.push(1);

bh.update(handle, 4);

std::cout << bh.top() << '\n';
}

In addition to update(), boost::heap::binomial_heap provides other member functions to change ele-
ments. The member functions increase() or decrease() can be called if you know in advance whether a
change will result in a higher or lower priority. In Example 17.3, the call to update() could be replaced with a
call to increase() since the number is increased from 2 to 4.
Boost.Heap provides additional priority queues whose member functions mainly differ in their runtime com-
plexity. For example, you can use the class boost::heap::fibonacci_heap if you want the member func-
tion push() to have a constant runtime complexity. The documentation on Boost.Heap provides a table with an
overview of the runtime complexities of the various classes and functions.

71

Chapter 18

Boost.Intrusive

Boost.Intrusive is a library especially suited for use in high performance programs. The library provides tools
to create intrusive containers. These containers replace the known containers from the standard library. Their
disadvantage is that they can’t be used as easily as, for example, std::list or std::set. But they have these
advantages:

• Intrusive containers don’t allocate memory dynamically. A call to push_back() doesn’t lead to a dy-
namic allocation with new. This is a one reason why intrusive containers can improve performance.

• Intrusive containers store the original objects, not copies. After all, they don’t allocate memory dynami-
cally. This leads to another advantage: Member functions such as push_back() don’t throw exceptions
because they neither allocate memory nor copy objects.

The advantages are paid for with more complicated code because preconditions must be met to store objects in
intrusive containers. You cannot store objects of arbitrary types in intrusive containers. For example, you cannot
put strings of type std::string in an intrusive container; instead you must use containers from the standard
library.
Example 18.1 prepares a class animal to allow objects of this type to be stored in an intrusive list.
In a list, an element is always accessed from another element, usually using a pointer. If an intrusive list is to
store objects of type animal without dynamic memory allocation, pointers must exist somewhere to concatenate
elements.
To store objects of type animal in an intrusive list, the class must provide the variables required by the intrusive
list to concatenate elements. Boost.Intrusive provides hooks – classes from which the required variables are in-
herited. To allow objects of the type animal to be stored in an intrusive list, animal must be derived from the
class boost::intrusive::list_base_hook.
Example 18.1 Using boost::intrusive::list

#include <boost/intrusive/list.hpp>
#include <string>
#include <utility>
#include <iostream>

using namespace boost::intrusive;

struct animal : public list_base_hook<>
{

std::string name;
int legs;
animal(std::string n, int l) : name{std::move(n)}, legs{l} {}

};

int main()
{

animal a1{"cat", 4};
animal a2{"shark", 0};
animal a3{"spider", 8};

typedef list<animal> animal_list;

72

http://www.boost.org/libs/intrusive

CHAPTER 18. BOOST.INTRUSIVE

animal_list animals;

animals.push_back(a1);
animals.push_back(a2);
animals.push_back(a3);

a1.name = "dog";

for (const animal &a : animals)
std::cout << a.name << '\n';

}

Hooks make it possible to ignore the implementation details. However, it’s safe to assume that boost::intrus
ive::list_base_hook provides at least two pointers because boost::intrusive::list is a doubly linked
list. Thanks to the base class boost::intrusive::list_base_hook, animal defines these two pointers to
allow objects of this type to be concatenated.
Please note that boost::intrusive::list_base_hook is a template that comes with default template param-
eters. Thus, no types need to be passed explicitly.
Boost.Intrusive provides the class boost::intrusive::list to create an intrusive list. This class is defined in
boost/intrusive/list.hpp and is used like std::list. Elements can be added using push_back(),
and it’s also possible to iterate over elements.
It is important to understand that intrusive containers do not store copies; they store the original objects. Ex-
ample 18.1 writes dog, shark, and spider to standard output – not cat. The object a1 is linked into the list.
That’s why the change of the name is visible when the program iterates over the elements in the list and displays
the names.
Because intrusive containers don’t store copies, you must remove objects from intrusive containers before you
destroy them.
Example 18.2 Removing and destroying dynamically allocated objects
#include <boost/intrusive/list.hpp>
#include <string>
#include <utility>
#include <iostream>

using namespace boost::intrusive;

struct animal : public list_base_hook<>
{

std::string name;
int legs;
animal(std::string n, int l) : name{std::move(n)}, legs{l} {}

};

int main()
{

animal a1{"cat", 4};
animal a2{"shark", 0};
animal *a3 = new animal{"spider", 8};

typedef list<animal> animal_list;
animal_list animals;

animals.push_back(a1);
animals.push_back(a2);
animals.push_back(*a3);

animals.pop_back();
delete a3;

for (const animal &a : animals)
std::cout << a.name << '\n';

}

73

CHAPTER 18. BOOST.INTRUSIVE

Example 18.2 creates an object of type animal with new and inserts it to the list animals. If you want to de-
stroy the object with delete when you don’t need it anymore, you must remove it from the list. Make sure that
you remove the object from the list before you destroy it – the order is important. Otherwise, the pointers in the
elements of the intrusive container might refer to a memory location that no longer contains an object of type
animal.
Because intrusive containers neither allocate nor free memory, objects stored in an intrusive container continue to
exist when the intrusive container is destroyed.
Since removing elements from intrusive containers doesn’t automatically destroy them, the containers provide
non-standard extensions. pop_back_and_dispose() is one such member function.
Example 18.3 Removing and destroying with pop_back_and_dispose()

#include <boost/intrusive/list.hpp>
#include <string>
#include <utility>
#include <iostream>

using namespace boost::intrusive;

struct animal : public list_base_hook<>
{

std::string name;
int legs;
animal(std::string n, int l) : name{std::move(n)}, legs{l} {}

};

int main()
{

animal a1{"cat", 4};
animal a2{"shark", 0};
animal *a3 = new animal{"spider", 8};

typedef list<animal> animal_list;
animal_list animals;

animals.push_back(a1);
animals.push_back(a2);
animals.push_back(*a3);

animals.pop_back_and_dispose([](animal *a){ delete a; });

for (const animal &a : animals)
std::cout << a.name << '\n';

}

pop_back_and_dispose() removes an element from a list and destroys it. Because intrusive containers don’t
know how an element should be destroyed, you need to pass to pop_back_and_dispose() a function or func-
tion object that does know how to destroy the element. pop_back_and_dispose() will remove the object from
the list, then call the function or function object and pass it a pointer to the object to be destroyed. Example 18.3
passes a lambda function that calls delete.
In Example 18.3, only the third element in animals can be removed with pop_back_and_dispose(). The
other elements in the list haven’t been created with new and, thus, must not be destroyed with delete.
Boost.Intrusive supports another mechanism to link removing and destroying of elements.
Example 18.4 Removing and destroying with auto unlink mode

#include <boost/intrusive/list.hpp>
#include <string>
#include <utility>
#include <iostream>

using namespace boost::intrusive;

typedef link_mode<auto_unlink> mode;

74

CHAPTER 18. BOOST.INTRUSIVE

struct animal : public list_base_hook<mode>
{

std::string name;
int legs;
animal(std::string n, int l) : name{std::move(n)}, legs{l} {}

};

int main()
{

animal a1{"cat", 4};
animal a2{"shark", 0};
animal *a3 = new animal{"spider", 8};

typedef constant_time_size<false> constant_time_size;
typedef list<animal, constant_time_size> animal_list;
animal_list animals;

animals.push_back(a1);
animals.push_back(a2);
animals.push_back(*a3);

delete a3;

for (const animal &a : animals)
std::cout << a.name << '\n';

}

Hooks support a parameter to set a link mode. The link mode is set with the class template boost::intrus
ive::link_mode. If boost::intrusive::auto_unlink is passed as a template parameter, the auto unlink
mode is selected.
The auto unlink mode automatically removes an element from an intrusive container when it is destroyed. Exam-
ple 18.4 writes only cat and shark to standard output.
The auto unlink mode can only be used if the member function size(), which is provided by all intrusive con-
tainers, has no constant complexity. By default, it has constant complexity, which means: the time it takes for
size() to return the number of elements doesn’t depend on how many elements are stored in a container. Switch-
ing constant complexity on or off is another option to optimize performance.
To change the complexity of size(), use the class template boost::intrusive::constant_time_size,
which expects either true or false as a template parameter. boost::intrusive::constant_time_size
can be passed as a second template parameter to intrusive containers, such as boost::intrusive::list, to
set the complexity for size().
Now that we’ve seen that intrusive containers support link mode and that there is an option to set the complexity
for size(), it might seem as though there is still much more to discover, but there actually isn’t. There are, for
example, only three link modes supported, and auto unlink mode is the only one you need to know. The default
mode used if you don’t pick a link mode is good enough for all other use cases.
Furthermore, there are no options for other member functions. There are no other classes, other than boost::
intrusive::constant_time_size, that you need to learn about.
Example 18.5 introduces a hook mechanism using another intrusive container: boost::intrusive::set.
Example 18.5 Defining a hook for boost::intrusive::set as a member variable

#include <boost/intrusive/set.hpp>
#include <string>
#include <utility>
#include <iostream>

using namespace boost::intrusive;

struct animal
{

std::string name;
int legs;
set_member_hook<> set_hook;
animal(std::string n, int l) : name{std::move(n)}, legs{l} {}

75

CHAPTER 18. BOOST.INTRUSIVE

bool operator<(const animal &a) const { return legs < a.legs; }
};

int main()
{

animal a1{"cat", 4};
animal a2{"shark", 0};
animal a3{"spider", 8};

typedef member_hook<animal, set_member_hook<>, &animal::set_hook> hook;
typedef set<animal, hook> animal_set;
animal_set animals;

animals.insert(a1);
animals.insert(a2);
animals.insert(a3);

for (const animal &a : animals)
std::cout << a.name << '\n';

}

There are two ways to add a hook to a class: either derive the class from a hook or define the hook as a member
variable. While the previous examples derived a class from boost::intrusive::list_base_hook, Exam-
ple 18.5 uses the class boost::intrusive::set_member_hook to define a member variable.
Please note that the name of the member variable doesn’t matter. However, the hook class you use depends on
the intrusive container. For example, to define a hook as a member variable for an intrusive list, use boost::
intrusive::list_member_hook instead of boost::intrusive::set_member_hook.
Intrusive containers have different hooks because they have different requirements for elements. However, you
can use different several hooks to allow objects to be stored in multiple intrusive containers. boost::intrus
ive::any_base_hook and boost::intrusive::any_member_hook let you store objects in any intrusive
container. Thanks to these classes, you don’t need to derive from multiple hooks or define multiple member vari-
ables as hooks.
Intrusive containers expect hooks to be defined in base classes by default. If a member variable is used as a hook,
as in Example 18.5, the intrusive container has to be told which member variable to use. That’s why both ani
mal and the type hook are passed to boost::intrusive::set. hook is defined with boost::intrusive::
member_hook, which is used whenever a member variable serves as a hook. boost::intrusive::member_h
ook expects the element type, the type of the hook, and a pointer to the member variable as template parameters.
Example 18.5 writes shark, cat, and spider, in that order, to standard output.
In addition to the classes boost::intrusive::list and boost::intrusive::set introduced in this chap-
ter, Boost.Intrusive also provides, for example, boost::intrusive::slist for singly linked lists and boost:
:intrusive::unordered_set for hash containers.

76

Chapter 19

Boost.MultiArray

Boost.MultiArray is a library that simplifies using arrays with multiple dimensions. The most important advan-
tage is that multidimensional arrays can be used like containers from the standard library. For example, there are
member functions, such as begin() and end(), that let you access elements in multidimensional arrays through
iterators. Iterators are easier to use than the pointers normally used with C arrays, especially with arrays that have
many dimensions.
Example 19.1 One-dimensional array with boost::multi_array

#include <boost/multi_array.hpp>
#include <iostream>

int main()
{

boost::multi_array<char, 1> a{boost::extents[6]};

a[0] = 'B';
a[1] = 'o';
a[2] = 'o';
a[3] = 's';
a[4] = 't';
a[5] = '\0';

std::cout << a.origin() << '\n';
}

Boost.MultiArray provides the class boost::multi_array to create arrays. This is the most important class
provided. It is defined in boost/multi_array.hpp.
boost::multi_array is a template expecting two parameters: The first parameter is the type of the elements
to store in the array. The second parameter determines how many dimensions the array should have.
The second parameter only sets the number of dimensions, not the number of elements in each dimension. Thus,
in Example 19.1, a is a one-dimensional array.
The number of elements in a dimension is set at runtime. Example 19.1 uses the global object boost::extents
to set dimension sizes. This object is passed to the constructor of a.
An object of type boost::multi_array can be used like a normal C array. Elements are accessed by passing
an index to operator[]. Example 19.1 stores five letters and a null character in a – a one-dimensional array
with six elements. origin() returns a pointer to the first element. The example uses this pointer to write the
word stored in the array – Boost – to standard output.
Unlike containers from the standard library, operator[] checks whether an index is valid. If an index is not
valid, the program exits with std::abort(). If you don’t want the validity of indexes to be checked, define the
macro BOOST_DISABLE_ASSERTS before you include boost/multi_array.hpp.
Example 19.2 Views and subarrays of a two-dimensional array

#include <boost/multi_array.hpp>
#include <algorithm>
#include <iostream>
#include <cstring>

77

http://www.boost.org/libs/multi_array

CHAPTER 19. BOOST.MULTIARRAY

int main()
{

boost::multi_array<char, 2> a{boost::extents[2][6]};

typedef boost::multi_array<char, 2>::array_view<1>::type array_view;
typedef boost::multi_array_types::index_range range;
array_view view = a[boost::indices[0][range{0, 5}]];

std::memcpy(view.origin(), "tsooB", 6);
std::reverse(view.begin(), view.end());

std::cout << view.origin() << '\n';

boost::multi_array<char, 2>::reference subarray = a[1];
std::memcpy(subarray.origin(), "C++", 4);

std::cout << subarray.origin() << '\n';
}

Example 19.2 creates a two-dimensional array. The number of elements in the first dimension is set to 2 and for
the second dimension set to 6. Think of the array as a table with two rows and six columns.
The first row of the table will contain the word Boost. Since only five letters need to be stored for this word, a
view is created which spans exactly five elements of the array.
A view, which is based on the class boost::multi_array::array_view, lets you access a part of an array
and treat that part as though it were a separate array.
boost::multi_array::array_view is a template that expects the number of dimensions in the view as a
template parameter. In Example 19.2 the number of dimensions for the view is 1. Because the array a has two
dimensions, one dimension is ignored. To save the word Boost, a one-dimensional array is sufficient; more di-
mensions would be confusing.
As with boost::multi_array, the number of dimensions is passed in as a template parameter, and the size
of each dimension is set at runtime. However, with boost::multi_array::array_view this isn’t done with
boost::extents. Instead it’s done with boost::indices, which is another global object provided by Boost.MultiArray.
As with boost::extents, indexes must be passed to boost::indices. While only numbers may be passed to
boost::extents, boost::indices accepts also ranges. These are defined using boost::multi_array_ty
pes::index_range.
In Example 19.2, the first parameter passed to boost::indices isn’t a range, it’s the number 0. When a num-
ber is passed, you cannot use boost::multi_array_types::index_range. In the example, the view will
take the first dimension of a – the one with index 0.
For the second parameter, boost::multi_array_types::index_range is used to define a range. By pass-
ing 0 and 5 to the constructor, the first five elements of the first dimension of a are made available. The range
starts at index 0 and ends at index 5 – excluding the element at index 5. The sixth element in the first dimension
is ignored.
Thus, view is a one-dimensional array consisting of five elements – the first five elements in the first row of a.
When view is accessed to copy a string with std::memcpy() and reverse the elements with std::reverse(),
this relation doesn’t matter. Once the view is created, it acts like an independent array with five elements.
When operator[] is called on an array of type boost::multi_array, the return value depends on the num-
ber of dimensions. In Example 19.1, the operator returns char elements because the array accessed is one dimen-
sional.
In Example 19.2, a is a two-dimensional array. Thus, operator[] returns a subarray rather than a char element.
Because the type of the subarray isn’t public, boost::multi_array::reference must be used. This type
isn’t identical to boost::multi_array::array_view, even if the subarray behaves like a view. A view must
be defined explicitly and can span arbitrary parts of an array, whereas a subarray is automatically returned by
operator[] and spans all elements in every dimension.
Example 19.3 Wrapping a C array with boost::multi_array_ref

#include <boost/multi_array.hpp>
#include <algorithm>
#include <iostream>
#include <cstring>

int main()

78

CHAPTER 19. BOOST.MULTIARRAY

{
char c[12] =
{

't', 's', 'o', 'o', 'B', '\0',
'C', '+', '+', '\0', '\0', '\0'

};

boost::multi_array_ref<char, 2> a{c, boost::extents[2][6]};

typedef boost::multi_array<char, 2>::array_view<1>::type array_view;
typedef boost::multi_array_types::index_range range;
array_view view = a[boost::indices[0][range{0, 5}]];

std::reverse(view.begin(), view.end());
std::cout << view.origin() << '\n';

boost::multi_array<char, 2>::reference subarray = a[1];
std::cout << subarray.origin() << '\n';

}

The class boost::multi_array_ref wraps an existing C array. In Example 19.3, a provides the same inter-
face as boost::multi_array, but without allocating memory. With boost::multi_array_ref, a C ar-
ray – no matter how many dimensions it has – can be treated like a multidimensional array of type boost::
multi_array. The C array just needs to be added as an additional parameter to the constructor.
Boost.MultiArray also provides the class boost::const_multi_array_ref, which treats a C array as a con-
stant multidimensional array.

79

Chapter 20

Boost.Container

Boost.Container is a Boost library that provides the same containers as the standard library. Boost.Container fo-
cuses on additional flexibility. For example, all containers from this library can be used with Boost.Interprocess
in shared memory – something that is not always possible with containers from the standard library.
Boost.Container provides additional advantages:

• The interfaces of the containers resemble those of the containers in the C++11 standard library. For exam-
ple, they provide member functions such as emplace_back(), which you can use in a C++98 program
even though it wasn't added to the standard library until C++11.

• With boost::container::slist or boost::container::stable_vector, Boost.Container offers
containers the standard library doesn’t provide.

• The implementation is platform independent. The containers behave the same everywhere. You don’t need
to worry about possible differences between implementations of the standard library.

• The containers from Boost.Container support incomplete types and can be used to define recursive contain-
ers.

Example 20.1 illustrates incomplete types.

Note

The examples in this chapters cannot be compiled with Visual C++ 2013 and Boost 1.55.0.
This bug is described in ticket 9332. It was fixed in Boost 1.56.0.

Example 20.1 Recursive containers with Boost.Container

#include <boost/container/vector.hpp>

using namespace boost::container;

struct animal
{

vector<animal> children;
};

int main()
{

animal parent, child1, child2;
parent.children.push_back(child1);
parent.children.push_back(child2);

}

The class animal has a member variable children of type boost::container::vector<animal>. boost::contai
ner::vector is defined in the header file boost/container/vector.hpp. Thus, the type of the member

80

http://www.boost.org/libs/container
https://svn.boost.org/trac/boost/ticket/9332

CHAPTER 20. BOOST.CONTAINER

variable children is based on the class animal, which defines the variable children. At this point, animal
hasn’t been defined completely. While the standard doesn’t require containers from the standard library to sup-
port incomplete types, recursive containers are explicitly supported by Boost.Container. Whether containers de-
fined by the standard library can be used recursively is implementation dependent.
Example 20.2 Using boost::container::stable_vector

#include <boost/container/stable_vector.hpp>
#include <iostream>

using namespace boost::container;

int main()
{

stable_vector<int> v(2, 1);
int &i = v[1];
v.erase(v.begin());
std::cout << i << '\n';

}

Boost.Container provides containers in addition to the well-known containers from the standard library. Exam-
ple 20.2 introduces the container boost::container::stable_vector, which behaves similarly to std::
vector, except that if boost::container::stable_vector is changed, all iterators and references to exist-
ing elements remain valid. This is possible because elements aren’t stored contiguously in boost::container:
:stable_vector. It is still possible to access elements with an index even though elements are not stored next
to each other in memory.
Boost.Container guarantees that the reference i in Example 20.2 remains valid when the first element in the vec-
tor is erased. The example displays 1.
Please note that neither boost::container::stable_vector nor other containers from this library support
C++11 initializer lists. In Example 20.2 v is initialized with two elements both set to 1.
boost::container::stable_vector is defined in boost/container/stable_vector.hpp.
Additional containers provided by Boost.Container are boost::container::flat_set, boost::contai
ner::flat_map, boost::container::slist, and boost::container::static_vector:

• boost::container::flat_set and boost::container::flat_map resemble std::set and std:
:map. However they are implemented as sorted vectors, not as a tree. This allows faster lookups and itera-
tions, but inserting and removing elements is more expensive.
These two containers are defined in the header files boost/container/flat_set.hpp and boost/
container/flat_map.hpp.

• boost::container::slist is a singly linked list. It is similar to std::forward_list, which was
added to the standard library with C++11. boost::container::slist provides a member function
size(), which is missing in std::forward_list.
boost::container::slist is defined in boost/container/slist.hpp.

• boost::container::static_vector stores elements like std::array directly in the container. Like
std::array, the container has a constant capacity, though the capacity doesn’t say anything about the
number of elements. The member functions push_back(), pop_back(), insert(), and erase() are
available to insert or remove elements. In this regard, boost::container::static_vector is similar
to std::vector. The member function size() returns the number of currently stored elements in the
container.
The capacity is constant, but can be changed with resize(). push_back() doesn’t change the capacity.
You may add an element with push_back() only if the capacity is greater than the number of currently
stored elements. Otherwise, push_back() throws an exception of type std::bad_alloc.
boost::container::static_vector is defined in boost/container/static_vector.hpp.

81

Part IV

Data Structures

82

Data structures are similar to containers since they can store one or multiple elements. However, they differ from
containers because they don’t support operations containers usually support. For example, it isn’t possible, with
the data structures introduced in this part, to access all elements in a single iteration.

• Boost.Optional makes it easy to mark optional return values. Objects created with Boost.Optional are ei-
ther empty or contain a single element. With Boost.Optional, you don’t need to use special values like a
null pointer or -1 to indicate that a function might not have a return value.

• Boost.Tuple provides boost::tuple, a class that has been part of the standard library since C++11.

• Boost.Any and Boost.Variant let you create variables that can store values of different types. Boost.Any
supports any arbitrary type, and Boost.Variant lets you pass the types that need to be supported as template
parameters.

• Boost.PropertyTree provides a tree-like data structure. This library is typically used to help manage config-
uration data. The data can also be written to and loaded from a file in formats such as JSON.

• Boost.DynamicBitset provides a class that resembles std::bitset but is configured at runtime.

• Boost.Tribool provides a data type similar to bool that supports three states.

• Boost.CompressedPair defines the class boost::compressed_pair, which can replace std::pair.
This class supports the so-called empty base class optimization.

83

Chapter 21

Boost.Optional

The library Boost.Optional provides the class boost::optional, which can be used for optional return values.
These are return values from functions that may not always return a result. Example 21.1 illustrates how optional
return values are usually implemented without Boost.Optional.
Example 21.1 Special values to denote optional return values

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>

int get_even_random_number()
{

int i = std::rand();
return (i % 2 == 0) ? i : -1;

}

int main()
{

std::srand(static_cast<unsigned int>(std::time(0)));
int i = get_even_random_number();
if (i != -1)

std::cout << std::sqrt(static_cast<float>(i)) << '\n';
}

Example 21.1 uses the function get_even_random_number(), which should return an even random number.
It does this in a rather naive fashion by calling the function std::rand() from the standard library. If std::
rand() generates an even random number, that number is returned by get_even_random_number(). If the
generated random number is odd, -1 is returned.
In this example, -1 means that no even random number could be generated. Thus, get_even_random_num
ber() can’t guarantee that an even random number is returned. The return value is optional.
Many functions use special values like -1 to denote that no result can be returned. For example, the member
function find() of the class std::string returns the special value std::string::npos if a substring can’t
be found. Functions whose return value is a pointer often return 0 to indicate that no result exists.
Boost.Optional provides boost::optional, which makes it possible to clearly mark optional return values.
Example 21.2 Optional return values with boost::optional

#include <boost/optional.hpp>
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>

using boost::optional;

optional<int> get_even_random_number()
{

int i = std::rand();

84

http://www.boost.org/libs/optional

CHAPTER 21. BOOST.OPTIONAL

return (i % 2 == 0) ? i : optional<int>{};
}

int main()
{

std::srand(static_cast<unsigned int>(std::time(0)));
optional<int> i = get_even_random_number();
if (i)

std::cout << std::sqrt(static_cast<float>(*i)) << '\n';
}

In Example 21.2 the return value of get_even_random_number() has a new type, boost::optional<int>. boost:
:optional is a template that must be instantiated with the actual type of the return value. boost/optional.
hpp must be included for boost::optional.
If get_even_random_number() generates an even random number, the value is returned directly, automati-
cally wrapped in an object of type boost::optional<int>, because boost::optional provides a non-exclusive
constructor. If get_even_random_number() does not generate an even random number, an empty object of
type boost::optional<int> is returned. The return value is created with a call to the default constructor.
main() checks whether i is empty. If it isn’t empty, the number stored in i is accessed with operator*. boost:
:optional appears to work like a pointer. However, you should not think of boost::optional as a pointer
because, for example, values in boost::optional are copied by the copy constructor while a pointer does not
copy the value it points to.
Example 21.3 Other useful member functions of boost::optional

#include <boost/optional.hpp>
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>

using boost::optional;

optional<int> get_even_random_number()
{

int i = std::rand();
return optional<int>{i % 2 == 0, i};

}

int main()
{

std::srand(static_cast<unsigned int>(std::time(0)));
optional<int> i = get_even_random_number();
if (i.is_initialized())

std::cout << std::sqrt(static_cast<float>(i.get())) << '\n';
}

Example 21.3 introduces other useful member functions of boost::optional. This class provides a special
constructor that takes a condition as the first parameter. If the condition is true, an object of type boost::opti
onal is initialized with the second parameter. If the condition is false, an empty object of type boost::optio
nal is created. Example 21.3 uses this constructor in the function get_even_random_number().
With is_initialized() you can check whether an object of type boost::optional is not empty. Boost.Optional
speaks about initialized and uninitialized objects – hence, the name of the member function is_initialized().
The member function get() is equivalent to operator*.
Boost.Optional provides free-standing helper functions such as boost::make_optional() and boost::get_
optional_value_or() (see Example 21.4). boost::make_optional() can be called to create an object of
type boost::optional. If you want a default value to be returned when boost::optional is empty, you can
call boost::get_optional_value_or().
The function boost::get_optional_value_or() is also provided as a member function of boost::optio
nal. It is called get_value_or().
Along with boost/optional/optional_io.hpp, Boost.Optional provides a header file with overloaded
stream operators, which let you write objects of type boost::optional to, for example, standard output.

85

CHAPTER 21. BOOST.OPTIONAL

Example 21.4 Various helper functions of Boost.Optional

#include <boost/optional.hpp>
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>

using namespace boost;

optional<int> get_even_random_number()
{

int i = std::rand();
return make_optional(i % 2 == 0, i);

}

int main()
{

std::srand(static_cast<unsigned int>(std::time(0)));
optional<int> i = get_even_random_number();
double d = get_optional_value_or(i, 0);
std::cout << std::sqrt(d) << '\n';

}

86

Chapter 22

Boost.Tuple

The library Boost.Tuple provides a class called boost::tuple, which is a generalized version of std::pair.
While std::pair can only store exactly two values, boost::tuple lets you choose how many values to store.
The standard library has provided the class std::tuple since C++11. If you work with a development environ-
ment supporting C++11, you can ignore Boost.Tuple because boost::tuple and std::tuple are identical.
Example 22.1 boost::tuple replacing std::pair

#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tuple<std::string, int> animal;
animal a{"cat", 4};
std::cout << a << '\n';

}

To use boost::tuple, include the header file boost/tuple/tuple.hpp. To use tuples with streams, in-
clude the header file boost/tuple/tuple_io.hpp. Boost.Tuple doesn’t provide a master header file that
automatically includes all others.
boost::tuple is used in the same way std::pair is. In Example 22.1, a tuple containing one value of type
std::string and one value of type int is created. This type is called animal, and it stores the name and the
number of legs of an animal.
While the definition of type animal could have used std::pair, objects of type boost::tuple can be written
to a stream. To do this you must include the header file boost/tuple/tuple_io.hpp, which provides the
required operators. Example 22.1 displays (cat 4).
Example 22.2 boost::tuple as the better std::pair

#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tuple<std::string, int, bool> animal;
animal a{"cat", 4, true};
std::cout << std::boolalpha << a << '\n';

}

Example 22.2 stores a name, the number of legs, and a flag that indicates whether the animal has a tail. All three
values are placed in a tuple. When executed, this program displays (cat 4 true).
You can create a tuple using the helper function boost::make_tuple(), which works like the helper function
std::make_pair() for std::pair (see Example 22.3).

87

http://www.boost.org/libs/tuple

CHAPTER 22. BOOST.TUPLE

Example 22.3 Creating tuples with boost::make_tuple()

#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <iostream>

int main()
{

std::cout.setf(std::ios::boolalpha);
std::cout << boost::make_tuple("cat", 4, true) << '\n';

}

A tuple can also contain references, as shown in Example 22.4.
The values 4 and true are passed by value and, thus, are stored directly inside the tuple, However, the first ele-
ment is a reference to the string s. The function boost::ref() from Boost.Ref is used to create the reference.
To create a constant reference, use boost::cref().
Example 22.4 Tuples with references
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <boost/ref.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "cat";
std::cout.setf(std::ios::boolalpha);
std::cout << boost::make_tuple(boost::ref(s), 4, true) << '\n';

}

Usually, you can use std::ref() from the C++11 standard library instead of boost::ref(). However, Exam-
ple 22.4 uses boost::ref() because only Boost.Ref provides an operator to write to standard output.
std::pair uses the member variables first and second to provide access. Because a tuple does not have a
fixed number of elements, access must be handled differently.
Example 22.5 Reading elements of a tuple
#include <boost/tuple/tuple.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tuple<std::string, int, bool> animal;
animal a = boost::make_tuple("cat", 4, true);
std::cout << a.get<0>() << '\n';
std::cout << boost::get<0>(a) << '\n';

}

There are two ways to access values in a tuple. You can call the member function get(), or you can pass the
tuple to the free-standing function boost::get(). In both cases, the index of the corresponding element in the
tuple must be provided as a template parameter. Example 22.5 accesses the first element of the tuple a in both
cases and, thus, displays cat twice.
Specifying an invalid index results in a compiler error because index validity is checked at compile time.
The member function get() and the free-standing function boost::get() both return a reference that allows
you to change a value inside a tuple.
Example 22.6 Writing elements of a tuple
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <string>
#include <iostream>

88

CHAPTER 22. BOOST.TUPLE

int main()
{

typedef boost::tuple<std::string, int, bool> animal;
animal a = boost::make_tuple("cat", 4, true);
a.get<0>() = "dog";
std::cout << std::boolalpha << a << '\n';

}

Example 22.6 modifies the animal's name and, thus, displays (dog 4 true).
Boost.Tuple also defines comparison operators. To compare tuples, include the header file boost/tuple/
tuple_comparison.hpp.
Example 22.7 Comparing tuples

#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tuple<std::string, int, bool> animal;
animal a1 = boost::make_tuple("cat", 4, true);
animal a2 = boost::make_tuple("shark", 0, true);
std::cout << std::boolalpha << (a1 != a2) << '\n';

}

Example 22.7 displays true because the tuples a1 and a2 are different.
The header file boost/tuple/tuple_comparison.hpp also contains definitions for other comparison
operators such as greater-than, which performs a lexicographical comparison.
Boost.Tuple supports a specific form of tuples called tier. Tiers are tuples whose elements are all reference types.
They can be constructed with the function boost::tie().
Example 22.8 Creating a tier with boost::tie()

#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tuple<std::string&, int&, bool&> animal;
std::string name = "cat";
int legs = 4;
bool tail = true;
animal a = boost::tie(name, legs, tail);
name = "dog";
std::cout << std::boolalpha << a << '\n';

}

Example 22.8 creates a tier a, which consists of references to the variables name, legs, and tail. When the
variable name is modified, the tier is modified at the same time.
Example 22.8 could have also been written using boost::make_tuple() and boost::ref() (see Exam-
ple 22.9).
Example 22.9 Creating a tier without boost::tie()

#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_io.hpp>
#include <string>
#include <iostream>

int main()
{

typedef boost::tuple<std::string&, int&, bool&> animal;

89

CHAPTER 22. BOOST.TUPLE

std::string name = "cat";
int legs = 4;
bool tail = true;
animal a = boost::make_tuple(boost::ref(name), boost::ref(legs),

boost::ref(tail));
name = "dog";
std::cout << std::boolalpha << a << '\n';

}

boost::tie() shortens the syntax. This function can also be used to unpack tuples. In Example 22.10, the indi-
vidual values of the tuple, returned by a function, are instantly stored in variables.
Example 22.10 Unpacking return values of a function from a tuple

#include <boost/tuple/tuple.hpp>
#include <string>
#include <iostream>

boost::tuple<std::string, int> new_cat()
{

return boost::make_tuple("cat", 4);
}

int main()
{

std::string name;
int legs;
boost::tie(name, legs) = new_cat();
std::cout << name << ", " << legs << '\n';

}

boost::tie() stores the string “cat” and the number 4, both of which are returned as a tuple from new_cat(),
in the variables name and legs.

90

Chapter 23

Boost.Any

Strongly typed languages, such as C++, require that each variable have a specific type that defines what kind of
information it can store. Other languages, such as JavaScript, allow developers to store any kind of information
in a variable. For example, in JavaScript a single variable can contain a string, then a number, and afterwards a
boolean value.
Boost.Any provides the class boost::any which, like JavaScript variables, can store arbitrary types of informa-
tion.
Example 23.1 Using boost::any

#include <boost/any.hpp>

int main()
{

boost::any a = 1;
a = 3.14;
a = true;

}

To use boost::any, include the header file boost/any.hpp. Objects of type boost::any can then be cre-
ated to store arbitrary information. In Example 23.1, a stores an int, then a double, then a bool.
Variables of type boost::any are not completely unlimited in what they can store; there are some precondi-
tions, albeit minimal ones. Any value stored in a variable of type boost::any must be copy-constructible. Thus,
it is not possible to store a C array, since C arrays aren’t copy-constructible.
To store a string, and not just a pointer to a C string, use std::string (see Example 23.2).
Example 23.2 Storing a string in boost::any

#include <boost/any.hpp>
#include <string>

int main()
{

boost::any a = std::string{"Boost"};
}

To access the value of boost::any variables, use the cast operator boost::any_cast (see Example 23.3).
Example 23.3 Accessing values with boost::any_cast

#include <boost/any.hpp>
#include <iostream>

int main()
{

boost::any a = 1;
std::cout << boost::any_cast<int>(a) << '\n';
a = 3.14;
std::cout << boost::any_cast<double>(a) << '\n';
a = true;
std::cout << std::boolalpha << boost::any_cast<bool>(a) << '\n';

91

http://www.boost.org/libs/any

CHAPTER 23. BOOST.ANY

}

By passing the appropriate type as a template parameter to boost::any_cast, the value of the variable is con-
verted. If an invalid type is specified, an exception of type boost::bad_any_cast will be thrown.
Example 23.4 boost::bad_any_cast in case of an error

#include <boost/any.hpp>
#include <iostream>

int main()
{

try
{

boost::any a = 1;
std::cout << boost::any_cast<float>(a) << '\n';

}
catch (boost::bad_any_cast &e)
{

std::cerr << e.what() << '\n';
}

}

Example 23.4 throws an exception because the template parameter of type float does not match the type int stored
in a. The program would also throw an exception if short or long were used as the template parameter.
Because boost::bad_any_cast is derived from std::bad_cast, catch handlers can catch exceptions of
this type, too.
To check whether or not a variable of type boost::any contains information, use the member function empty().
To check the type of the stored information, use the member function type().
Example 23.5 Checking type of currently stored value

#include <boost/any.hpp>
#include <typeinfo>
#include <iostream>

int main()
{

boost::any a = 1;
if (!a.empty())
{

const std::type_info &ti = a.type();
std::cout << ti.name() << '\n';

}
}

Example 23.5 uses both empty() and type(). While empty() returns a boolean value, the return value of
type() is of type std::type_info, which is defined in the header file typeinfo.
Example 23.6 shows how to obtain a pointer to the value stored in a boost::any variable using boost::any_c
ast.
Example 23.6 Accessing values through a pointer

#include <boost/any.hpp>
#include <iostream>

int main()
{

boost::any a = 1;
int *i = boost::any_cast<int>(&a);
std::cout << *i << '\n';

}

You simply pass a pointer to a boost::any variable to boost::any_cast; the template parameter remains
unchanged.

92

Chapter 24

Boost.Variant

Boost.Variant provides a class called boost::variant that resembles union. You can store values of differ-
ent types in a boost::variant variable. At any point only one value can be stored. When a new value is as-
signed, the old value is overwritten. However, the new value may have a different type from the old value. The
only requirement is that the types must have been passed as template parameters to boost::variant so they
are known to the boost::variant variable.
boost::variant supports any type. For example, it is possible to store a std::string in a boost::vari
ant variable – something that wasn’t possible with union before C++11. With C++11, the requirements for
union were relaxed. Now a union can contain a std::string. Because a std::string must be initialized
with placement new and has to be destroyed by an explicit call to the destructor, it can still make sense to use
boost::variant, even in a C++11 development environment.
Example 24.1 Using boost::variant

#include <boost/variant.hpp>
#include <string>

int main()
{

boost::variant<double, char, std::string> v;
v = 3.14;
v = 'A';
v = "Boost";

}

boost::variant is defined in boost/variant.hpp. Because boost::variant is a template, at least one
parameter must be specified. One or more template parameters specify the supported types. In Example 24.1, v
can store values of type double, char, or std::string. However, if you tried to assign a value of type int to v,
the resulting code would not compile.
Example 24.2 Accessing values in boost::variant with boost::get()

#include <boost/variant.hpp>
#include <string>
#include <iostream>

int main()
{

boost::variant<double, char, std::string> v;
v = 3.14;
std::cout << boost::get<double>(v) << '\n';
v = 'A';
std::cout << boost::get<char>(v) << '\n';
v = "Boost";
std::cout << boost::get<std::string>(v) << '\n';

}

To display the stored values of v, use the free-standing function boost::get() (see Example 24.2).
boost::get() expects one of the valid types for the corresponding variable as a template parameter. Specifying
an invalid type will result in a run-time error because validation of types does not take place at compile time.

93

http://www.boost.org/libs/variant

CHAPTER 24. BOOST.VARIANT

Variables of type boost::variant can be written to streams such as the standard output stream, bypassing the
hazard of run-time errors (see Example 24.3).
Example 24.3 Direct output of boost::variant on a stream

#include <boost/variant.hpp>
#include <string>
#include <iostream>

int main()
{

boost::variant<double, char, std::string> v;
v = 3.14;
std::cout << v << '\n';
v = 'A';
std::cout << v << '\n';
v = "Boost";
std::cout << v << '\n';

}

Example 24.4 Using a visitor for boost::variant

#include <boost/variant.hpp>
#include <string>
#include <iostream>

struct output : public boost::static_visitor<>
{

void operator()(double d) const { std::cout << d << '\n'; }
void operator()(char c) const { std::cout << c << '\n'; }
void operator()(std::string s) const { std::cout << s << '\n'; }

};

int main()
{

boost::variant<double, char, std::string> v;
v = 3.14;
boost::apply_visitor(output{}, v);
v = 'A';
boost::apply_visitor(output{}, v);
v = "Boost";
boost::apply_visitor(output{}, v);

}

For type-safe access, Boost.Variant provides a function called boost::apply_visitor().
As its first parameter, boost::apply_visitor() expects an object of a class derived from boost::static
_visitor. This class must overload operator() for every type used by the boost::variant variable it acts
on. Consequently, the operator is overloaded three times in Example 24.4 because v supports the types double,
char, and std::string.
boost::static_visitor is a template. The type of the return value of operator() must be specified as a
template parameter. If the operator does not have a return value, a template parameter is not required, as seen in
the example.
The second parameter passed to boost::apply_visitor() is a boost::variant variable.
boost::apply_visitor() automatically calls the operator() for the first parameter that matches the type
of the value currently stored in the second parameter. This means that the sample program uses different over-
loaded operators every time boost::apply_visitor() is invoked – first the one for double, followed by the
one for char, and finally the one for std::string.
The advantage of boost::apply_visitor() is not only that the correct operator is called automatically. In
addition, boost::apply_visitor() ensures that overloaded operators have been provided for every type sup-
ported by boost::variant variables. If one of the three overloaded operators had not been defined, the code
could not be compiled.
Example 24.5 Using a visitor with a function template for boost::variant

94

CHAPTER 24. BOOST.VARIANT

#include <boost/variant.hpp>
#include <string>
#include <iostream>

struct output : public boost::static_visitor<>
{

template <typename T>
void operator()(T t) const { std::cout << t << '\n'; }

};

int main()
{

boost::variant<double, char, std::string> v;
v = 3.14;
boost::apply_visitor(output{}, v);
v = 'A';
boost::apply_visitor(output{}, v);
v = "Boost";
boost::apply_visitor(output{}, v);

}

If overloaded operators are equivalent in functionality, the code can be simplified by using a template (see Exam-
ple 24.5).
Because boost::apply_visitor() ensures code correctness at compile time, it should be preferred over
boost::get().

95

Chapter 25

Boost.PropertyTree

With the class boost::property_tree::ptree, Boost.PropertyTree provides a tree structure to store key/-
value pairs. Tree structure means that a trunk exists with numerous branches that have numerous twigs. A file
system is a good example of a tree structure. File systems have a root directory with subdirectories that them-
selves can have subdirectories and so on.
To use boost::property_tree::ptree, include the header file boost/property_tree/ptree.hpp.
This is a master header file, so no other header files need to be included for Boost.PropertyTree.
Example 25.1 Accessing data in boost::property_tree::ptree

#include <boost/property_tree/ptree.hpp>
#include <iostream>

using boost::property_tree::ptree;

int main()
{

ptree pt;
pt.put("C:.Windows.System", "20 files");

ptree &c = pt.get_child("C:");
ptree &windows = c.get_child("Windows");
ptree &system = windows.get_child("System");
std::cout << system.get_value<std::string>() << '\n';

}

Example 25.1 uses boost::property_tree::ptree to store a path to a directory. This is done with a call
to put(). This member function expects two parameters because boost::property_tree::ptree is a tree
structure that saves key/value pairs. The tree doesn’t just consist of branches and twigs, a value must be assigned
to each branch and twig. In Example 25.1 the value is “20 files”.
The first parameter passed to put() is more interesting. It is a path to a directory. However, it doesn’t use the
backlash, which is the common path separator on Windows. It uses the dot.
You need to use the dot because it’s the separator Boost.PropertyTree expects for keys. The parameter “C:.Windows.System”
tells pt to create a branch called C: with a branch called Windows that has another branch called System. The
dot creates the nested structure of branches. If “C:\Windows\System” had been passed as the parameter, pt would
only have one branch called C:\Windows\System.
After the call to put(), pt is accessed to read the stored value “20 files” and write it to standard output. This is
done by jumping from branch to branch – or directory to directory.
To access a subbranch, you call get_child(), which returns a reference to an object of the same type get_ch
ild() was called on. In Example 25.1, this is a reference to boost::property_tree::ptree. Because every
branch can have subbranches, and because there is no structural difference between higher and lower branches,
the same type is used.
The third call to get_child() retrieves the boost::property_tree::ptree, which represents the directory
System. get_value() is called to read the value that was stored at the beginning of the example with put().
Please note that get_value() is a function template. You pass the type of the return value as a template param-
eter. That way get_value() can do an automatic type conversion.

96

http://www.boost.org/libs/property_tree

CHAPTER 25. BOOST.PROPERTYTREE

Example 25.2 Accessing data in basic_ptree<std::string, int>

#include <boost/property_tree/ptree.hpp>
#include <utility>
#include <iostream>

int main()
{

typedef boost::property_tree::basic_ptree<std::string, int> ptree;
ptree pt;
pt.put(ptree::path_type{"C:\\Windows\\System", '\\'}, 20);
pt.put(ptree::path_type{"C:\\Windows\\Cursors", '\\'}, 50);

ptree &windows = pt.get_child(ptree::path_type{"C:\\Windows", '\\'});
int files = 0;
for (const std::pair<std::string, ptree> &p : windows)

files += p.second.get_value<int>();
std::cout << files << '\n';

}

There are two changes in Example 25.2 compared with Example 25.1. These changes are to save paths to direc-
tories and the number of files in directories more easily. First, paths use a backslash as the separator when passed
to put(). Secondly, the number of files is stored as an int.
By default, Boost.PropertyTree uses a dot as the separator for keys. If you need to use another character, such
as the backslash, as the separator, you don’t pass the key as a string to put(). Instead you wrap it in an object
of type boost::property_tree::ptree::path_type. The constructor of this class, which depends on
boost::property_tree::ptree, takes the key as its first parameter and the separator character as its sec-
ond parameter. That way, you can use a path such as C:\Windows\System, as shown in Example 25.2, without
having to replace backslashes with dots.
boost::property_tree::ptree is based on the class template boost::property_tree::basic_ptree.
Because keys and values are often strings, boost::property_tree::ptree is predefined. However, you
can use boost::property_tree::basic_ptree with different types for keys and values. The tree in Ex-
ample 25.2 uses an int to store the number of files in a directory rather than a string.
boost::property_tree::ptree provides the member functions begin() and end(). However, boost::
property_tree::ptree only lets you iterate over the branches in one level. Example 25.2 iterates over the
subdirectories of C:\Windows. You can’t get an iterator to iterate over all branches in all levels.
The for loop in Example 25.2 reads the number of files in all subdirectories of C:\Windows to calculate a total.
As a result, the example displays 70. The example doesn’t access objects of type ptree directly. Instead it iter-
ates over elements of type std::pair<std::string, ptree>. first contains the key of the current branch.
That is System and Cursors in Example 25.2. second provides access to an object of type ptree, which repre-
sents the possible subdirectories. In the example, only the values assigned to System and Cursors are read. As in
Example 25.1, the member function get_value() is called.
boost::property_tree::ptree only stores the value of the current branch, not its key. You can get the value
with get_value(), but there is no member function to get the key. The key is stored in boost::property_t
ree::ptree one level up. This also explains why the for loop iterates over elements of type std::pair<std:
:string, ptree>.
Example 25.3 uses with boost::property_tree::iptree another predefined tree from Boost.PropertyTree.
In general, this type behaves like boost::property_tree::ptree. The only difference is that boost::pro
perty_tree::iptree doesn’t distinguish between lower and upper case. For example, a value stored with the
key C:\Windows\System can be read with c:\windows\system.
Example 25.3 Accessing data with a translator

#include <boost/property_tree/ptree.hpp>
#include <boost/optional.hpp>
#include <iostream>
#include <cstdlib>

struct string_to_int_translator
{

typedef std::string internal_type;
typedef int external_type;

97

CHAPTER 25. BOOST.PROPERTYTREE

boost::optional<int> get_value(const std::string &s)
{

char *c;
long l = std::strtol(s.c_str(), &c, 10);
return boost::make_optional(c != s.c_str(), static_cast<int>(l));

}
};

int main()
{

typedef boost::property_tree::iptree ptree;
ptree pt;
pt.put(ptree::path_type{"C:\\Windows\\System", '\\'}, "20 files");
pt.put(ptree::path_type{"C:\\Windows\\Cursors", '\\'}, "50 files");

string_to_int_translator tr;
int files =

pt.get<int>(ptree::path_type{"c:\\windows\\system", '\\'}, tr) +
pt.get<int>(ptree::path_type{"c:\\windows\\cursors", '\\'}, tr);

std::cout << files << '\n';
}

Unlike Example 25.1, get_child() isn’t called multiple times to access subbranches. Just as put() can be
used to store a value in a subbranch directly, a value from a subbranch can be read with get(). The key is de-
fined the same way – for example using boost::property_tree::iptree::path_type.
Like get_value(), get() is a function template. You have to pass the type of the return value as a template
parameter. Boost.PropertyTree does an automatic type conversion.
To convert types, Boost.PropertyTree uses translators. The library provides a few translators out of the box that
are based on streams and can convert types automatically.
Example 25.3 defines the translator string_to_int_translator, which converts a value of type std::
string to int. The translator is passed as an additional parameter to get(). Because the translator is just used
to read, it only defines one member function, get_value(). If you want to use the translator for writing, too,
then you would need to define a member function put_value() and then pass the translator as an additional
parameter to put().
get_value() returns a value of the type that is used in pt. However, because a type conversion doesn’t always
succeed, boost::optional is used. If a value is stored in Example 25.3 that can’t be converted to an int with
std::strtol(), an empty object of type boost::optional will be returned.
Please note that a translator must also define the two types internal_type and external_type. If you need to con-
vert types when storing data, define put_value() similar to get_value().
If you modify Example 25.3 to store the value “20” instead of value “20 files,” get_value() can be called
without passing a translator. The translators provided by Boost.PropertyTree can convert from std::string
to int. However, the type conversion only succeeds when the entire string can be converted. The string must not
contain any letters. Because std::strtol() can do a type conversion as long as the string starts with digits, the
more liberal translator string_to_int_translator is used in Example 25.3.
Example 25.4 Various member functions of boost::property_tree::ptree

#include <boost/property_tree/ptree.hpp>
#include <utility>
#include <iostream>

using boost::property_tree::ptree;

int main()
{

ptree pt;
pt.put("C:.Windows.System", "20 files");

boost::optional<std::string> c = pt.get_optional<std::string>("C:");
std::cout << std::boolalpha << c.is_initialized() << '\n';

pt.put_child("D:.Program Files", ptree{"50 files"});

98

CHAPTER 25. BOOST.PROPERTYTREE

pt.add_child("D:.Program Files", ptree{"60 files"});

ptree d = pt.get_child("D:");
for (const std::pair<std::string, ptree> &p : d)

std::cout << p.second.get_value<std::string>() << '\n';

boost::optional<ptree&> e = pt.get_child_optional("E:");
std::cout << e.is_initialized() << '\n';

}

You can call the member function get_optional() if you want to read the value of a key, but you aren’t sure if
the key exists. get_optional() returns the value in an object of type boost::optional. The object is empty
if the key wasn’t found. Otherwise, get_optional() works the same as get().
It might seem like put_child() and add_child() are the same as put(). The difference is that put() cre-
ates only a key/value pair while put_child() and add_child() insert an entire subtree. Note that an object
of type boost::property_tree::ptree is passed as the second parameter to put_child() and add_ch
ild().
The difference between put_child() and add_child() is that put_child() accesses a key if that key al-
ready exists, while add_child() always inserts a new key into the tree. That’s why the tree in Example 25.4
has two keys called “D:.Program Files”. Depending on the use case, this can be confusing. If a tree represents a
file system, there shouldn’t be two identical paths. You have to avoid inserting identical keys if you don’t want
duplicates in a tree.
Example 25.4 displays the value of the keys below “D:” in the for loop. The example writes 50 files and 60
files to standard output, which proves there are two identical keys called “D:.Program Files”.
The last member function introduced in Example 25.4 is get_child_optional(). This function is used like
get_child(). get_child_optional() returns an object of type boost::optional. You call boost::
optional if you aren’t sure whether a key exists.
Example 25.5 Serializing a boost::property_tree::ptree in the JSON format

#include <boost/property_tree/ptree.hpp>
#include <boost/property_tree/json_parser.hpp>
#include <iostream>

using namespace boost::property_tree;

int main()
{

ptree pt;
pt.put("C:.Windows.System", "20 files");
pt.put("C:.Windows.Cursors", "50 files");

json_parser::write_json("file.json", pt);

ptree pt2;
json_parser::read_json("file.json", pt2);

std::cout << std::boolalpha << (pt == pt2) << '\n';
}

Boost.PropertyTree does more than just provide structures to manage data in memory. As can be seen in Exam-
ple 25.5, the library also provides functions to save a boost::property_tree::ptree in a file and load it
from a file.
The header file boost/property_tree/json_parser.hpp provides access to the functions boost::
property_tree::json_parser::write_json() and boost::property_tree::json_parser::read
_json(). These functions make it possible to save and load a boost::property_tree::ptree serialized in
the JSON format. That way you can support configuration files in the JSON format.
If you want to call functions that store a boost::property_tree::ptree in a file or load it from a file, you
must include header files such as boost/property_tree/json_parser.hpp. It isn’t sufficient to only
include boost/property_tree/ptree.hpp.
In addition to the functions boost::property_tree::json_parser::write_json() and boost::proper
ty_tree::json_parser::read_json(), Boost.PropertyTree provides functions for additional data formats.

99

CHAPTER 25. BOOST.PROPERTYTREE

You use boost::property_tree::ini_parser::write_ini() and boost::property_tree::ini_par
ser::read_ini() from boost/property_tree/ini_parser.hpp to support INI-files. With boost:
:property_tree::xml_parser::write_xml() and boost::property_tree::xml_parser::read_
xml() from boost/property_tree/xml_parser.hpp, data can be loaded and stored in XML format.
With boost::property_tree::info_parser::write_info() and boost::property_tree::info_pa
rser::read_info() from boost/property_tree/info_parser.hpp, you can access another format
that was developed and optimized to serialize trees from Boost.PropertyTree.
None of the supported formats guarantees that a boost::property_tree::ptree will look the same after it
has been saved and reloaded. For example, the JSON format can lose type information because boost::prope
rty_tree::ptree can’t distinguish between true and “true”. The type is always the same. Even if the various
functions make it easy to save and load a boost::property_tree::ptree, don’t forget that Boost.PropertyTree
doesn’t support the formats completely. The main focus of the library is on the structure boost::property_t
ree::ptree and not on supporting various data formats.

100

Chapter 26

Boost.DynamicBitset

The library Boost.DynamicBitset provides the class boost::dynamic_bitset, which is used like std::bit
set. The difference is that the number of bits for std::bitset must be specified at compile time, whereas the
number of bits for boost::dynamic_bitset is specified at run time.
To use boost::dynamic_bitset, include the header file boost/dynamic_bitset.hpp.
Example 26.1 Using boost::dynamic_bitset

#include <boost/dynamic_bitset.hpp>
#include <iostream>

int main()
{

boost::dynamic_bitset<> db{3, 4};

db.push_back(true);

std::cout.setf(std::ios::boolalpha);
std::cout << db.size() << '\n';
std::cout << db.count() << '\n';
std::cout << db.any() << '\n';
std::cout << db.none() << '\n';

std::cout << db[0].flip() << '\n';
std::cout << ~db[3] << '\n';
std::cout << db << '\n';

}

boost::dynamic_bitset is a template that requires no template parameters when instantiated; default types
are used in that case. More important are the parameters passed to the constructor. In Example 26.1, the con-
structor creates db with 3 bits. The second parameter initializes the bits; in this case, the number 4 initializes the
most significant bit – the bit on the very left.
The number of bits inside an object of type boost::dynamic_bitset can be changed at any time. The mem-
ber function push_back() adds another bit, which will become the most significant bit. Calling push_back()
in Example 26.1 causes db to contain 4 bits, of which the two most significant bits are set. Therefore, db stores
the number 12.
You can decrease the number of bits by calling the member function resize(). Depending on the parameter
passed to resize(), bits will either be added or removed.
boost::dynamic_bitset provides member functions to query data and access individual bits. The member
functions size() and count() return the number of bits and the number of bits currently set, respectively.
any() returns true if at least one bit is set, and none() returns true if no bit is set.
To access individual bits, use array syntax. A reference to an internal class is returned that represents the corre-
sponding bit and provides member functions to manipulate it. For example, the member function flip() toggles
the bit. Bitwise operators such as operator~ are available as well. Overall, the class boost::dynamic_bit
set offers the same bit manipulation functionality as std::bitset.
Like std::bitset, boost::dynamic_bitset does not support iterators.

101

http://www.boost.org/libs/dynamic_bitset

Chapter 27

Boost.Tribool

The library Boost.Tribool provides the class boost::logic::tribool, which is similar to bool. However,
while bool can distinguish two states, boost::logic::tribool handles three.
To use boost::logic::tribool, include the header file boost/logic/tribool.hpp.
A variable of type boost::logic::tribool can be set to true, false, or indeterminate. The default con-
structor initializes the variable to false. That’s why Example 27.1 writes false first.
Example 27.1 Three states of boost::logic::tribool

#include <boost/logic/tribool.hpp>
#include <iostream>

using namespace boost::logic;

int main()
{

tribool b;
std::cout << std::boolalpha << b << '\n';

b = true;
b = false;
b = indeterminate;
if (b)

;
else if (!b)

;
else

std::cout << "indeterminate\n";
}

The if statement in Example 27.1 illustrates how to evaluate b correctly. You have to check for true and false
explicitly. If the variable is set to indeterminate, as in the example, the else block will be executed.
Boost.Tribool also provides the function boost::logic::indeterminate(). If you pass a variable of type
boost::logic::tribool that is set to indeterminate, this function will return true. If the variable is set
to true or false, it will return false.
Example 27.2 Logical operators with boost::logic::tribool

#include <boost/logic/tribool.hpp>
#include <boost/logic/tribool_io.hpp>
#include <iostream>

using namespace boost::logic;

int main()
{

std::cout.setf(std::ios::boolalpha);

tribool b1 = true;
std::cout << (b1 || indeterminate) << '\n';

102

http://boost.org/libs/logic

CHAPTER 27. BOOST.TRIBOOL

std::cout << (b1 && indeterminate) << '\n';

tribool b2 = false;
std::cout << (b2 || indeterminate) << '\n';
std::cout << (b2 && indeterminate) << '\n';

tribool b3 = indeterminate;
std::cout << (b3 || b3) << '\n';
std::cout << (b3 && b3) << '\n';

}

You can use logical operators with variables of type boost::logic::tribool, just as you can with variables
of type bool. In fact, this is the only way to process variables of type boost::logic::tribool because the
class doesn’t provide any member functions.
Example 27.2 returns true for b1 || indeterminate, false for b2 && indeterminate, and indeterm
inate in all other cases. If you look at the operations and their results, you will notice that boost::logic::
tribool behaves as one would expect intuitively. The documentation on Boost.Tribool also contains tables that
show which operations lead to which results.
Example 27.2 also illustrates how the values true, false, and indeterminate are written to standard output
with variables of type boost::logic::tribool. The header file boost/logic/tribool_io.hpp must
be included and the flag std::ios::boolalpha must be set for standard output.
Boost.Tribool also provides the macro BOOST_TRIBOOL_THIRD_STATE, which lets you substitute another value
for indeterminate. For example, you could use dontknow instead of indeterminate.

103

Chapter 28

Boost.CompressedPair

Boost.CompressedPair provides boost::compressed_pair, a class that behaves like std::pair. However,
if one or both template parameters are empty classes, boost::compressed_pair consumes less memory.
boost::compressed_pair uses a technique known as empty base class optimization.
To use boost::compressed_pair, include the header file boost/compressed_pair.hpp.
Example 28.1 Reduced memory requirements with boost::compressed_pair

#include <boost/compressed_pair.hpp>
#include <utility>
#include <iostream>

struct empty {};

int main()
{

std::pair<int, empty> p;
std::cout << sizeof(p) << '\n';

boost::compressed_pair<int, empty> cp;
std::cout << sizeof(cp) << '\n';

}

Example 28.1 illustrates this by using boost::compressed_pair for cp and std::pair for p. When com-
piled using Visual C++ 2013 and run on a 64-bit Windows 7 system, the example returns 4 for sizeof(cp) and
8 for sizeof(p).
Please note that there is another difference between boost::compressed_pair and std::pair: the values
stored in boost::compressed_pair are accessed through the member functions first() and second().
std::pair uses two identically named member variables instead.

104

http://www.boost.org/libs/utility/compressed_pair.htm

Part V

Algorithms

105

The following libraries provide algorithms that complement the algorithms from the standard library.

• Boost.Algorithm collects and provides useful algorithms.

• Boost.Range also provides algorithms, but more important, it defines a new concept called range, which
should make using algorithms easier.

• Boost.Graph is specialized for graphs and provides algorithms such as finding the shortest path between
two points.

A few libraries that contain algorithms are introduced in other parts of the book. For example, you will find algo-
rithms for strings in the library Boost.StringAlgorithms, which is introduced in Part II

106

Chapter 29

Boost.Algorithm

Boost.Algorithm provides algorithms that complement the algorithms from the standard library. Unlike Boost.Range,
Boost.Algorithm doesn’t introduce new concepts. The algorithms defined by Boost.Algorithm resemble the algo-
rithms from the standard library.
Please note that there are numerous algorithms provided by other Boost libraries. For example, you will find
algorithms to process strings in Boost.StringAlgorithms. The algorithms provided by Boost.Algorithm are not
bound to particular classes, such as std::string. Like the algorithms from the standard library, they can be
used with any container.
Example 29.1 Testing for exactly one value with boost::algorithm::one_of_equal()

#include <boost/algorithm/cxx11/one_of.hpp>
#include <array>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::array<int, 6> a{{0, 5, 2, 1, 4, 3}};
auto predicate = [](int i){ return i == 4; };
std::cout.setf(std::ios::boolalpha);
std::cout << one_of(a.begin(), a.end(), predicate) << '\n';
std::cout << one_of_equal(a.begin(), a.end(), 4) << '\n';

}

boost::algorithm::one_of() tests whether a condition is met exactly once. The condition to test is passed
as a predicate. In Example 29.1 the call to boost::algorithm::one_of() returns true since the number 4 is
stored exactly once in a.
To test elements in a container for equality, call boost::algorithm::one_of_equal(). You don’t pass a
predicate. Instead, you pass a value to compare to boost::algorithm::one_of_equal(). In Example 29.1
the call to boost::algorithm::one_of_equal() also returns true.
boost::algorithm::one_of() complements the algorithms std::all_of(), std::any_of(), and std:
:none_of(), which were added to the standard library with C++11. However, Boost.Algorithm provides the
functions boost::algorithm::all_of(), boost::algorithm::any_of(), and boost::algorithm::
none_of() for developers whose development environment doesn’t support C++11. You will find these algo-
rithms in the header files boost/algorithm/cxx11/all_of.hpp, boost/algorithm/cxx11/any_
of.hpp, and boost/algorithm/cxx11/none_of.hpp.
Boost.Algorithm also defines the following functions: boost::algorithm::all_of_equal(), boost::alg
orithm::any_of_equal(), and boost::algorithm::none_of_equal().
Boost.Algorithm provides more algorithms from the C++11 standard library. For example, you have access to
boost::algorithm::is_partitioned(), boost::algorithm::is_permutation(), boost::algori
thm::copy_n(), boost::algorithm::find_if_not() and boost::algorithm::iota(). These func-
tions work like the identically named functions from the C++11 standard library and are provided for develop-
ers who don’t use C++11. However, Boost.Algorithm provides a few function variants that could be useful for
C++11 developers, too.

107

http://www.boost.org/libs/algorithm

CHAPTER 29. BOOST.ALGORITHM

Example 29.2 More variants of C++11 algorithms

#include <boost/algorithm/cxx11/iota.hpp>
#include <boost/algorithm/cxx11/is_sorted.hpp>
#include <boost/algorithm/cxx11/copy_if.hpp>
#include <vector>
#include <iterator>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::vector<int> v;
iota_n(std::back_inserter(v), 10, 5);
std::cout.setf(std::ios::boolalpha);
std::cout << is_increasing(v) << '\n';
std::ostream_iterator<int> out{std::cout, ","};
copy_until(v, out, [](int i){ return i > 12; });

}

Boost.Algorithm provides the C++11 algorithm boost::algorithm::iota() in the header file boost/
algorithm/cxx11/iota.hpp. This function generates sequentially increasing numbers. It expects two
iterators for the beginning and end of a container. The elements in the container are then overwritten with se-
quentially increasing numbers.
Instead of boost::algorithm::iota(), Example 29.2 uses boost::algorithm::iota_n(). This function
expects one iterator to write the numbers to. The number of numbers to generate is passed as a third parameter to
boost::algorithm::iota_n().
boost::algorithm::is_increasing() and boost::algorithm::is_sorted() are defined in the header
file boost/algorithm/cxx11/is_sorted.hpp. boost::algorithm::is_increasing() has the
same function as boost::algorithm::is_sorted(), but the function name expresses more clearly that the
function checks that values are in increasing order. The header file also defines the related function boost::
algorithm::is_decreasing().
In Example 29.2, v is passed directly to boost::algorithm::is_increasing(). All functions provided by
Boost.Algorithm have a variant that operates based on ranges. Containers can be passed directly to these func-
tions.
boost::algorithm::copy_until() is defined in boost/algorithm/cxx11/copy_if.hpp. This is
another variant of std::copy(). Boost.Algorithm also provides boost::algorithm::copy_while().
Example 29.2 displays true as a result from boost::algorithm::is_increasing(), and boost::algori
thm::copy_until() writes the numbers 10, 11, and 12 to standard output.
Example 29.3 C++14 algorithms from Boost.Algorithm

#include <boost/algorithm/cxx14/equal.hpp>
#include <boost/algorithm/cxx14/mismatch.hpp>
#include <vector>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::vector<int> v{1, 2};
std::vector<int> w{1, 2, 3};
std::cout.setf(std::ios::boolalpha);
std::cout << equal(v.begin(), v.end(), w.begin(), w.end()) << '\n';
auto pair = mismatch(v.begin(), v.end(), w.begin(), w.end());
if (pair.first != v.end())

std::cout << *pair.first << '\n';
if (pair.second != w.end())

std::cout << *pair.second << '\n';
}

108

CHAPTER 29. BOOST.ALGORITHM

Besides the algorithms from the C++11 standard library, Boost.Algorithm also defines algorithms that will very
likely be added to the standard library with C++14. Example 29.3 uses new variants of two of these functions,
boost::algorithm::equal() and boost::algorithm::mismatch(). In contrast to the identically named
functions that have been part of the standard library since C++98, four iterators, rather than three, are passed to
these new functions. The algorithms in Example 29.3 don’t expect the second sequence to contain as many ele-
ments as the first sequence.
While boost::algorithm::equal() returns a bool, boost::algorithm::mismatch() returns two itera-
tors in a std::pair. first and second refer to the elements in the first and second sequence that are the first
ones mismatching. These iterators may also refer to the end of a sequence.
Example 29.3 writes false and 3 to standard output. false is the return value of boost::algorithm::equal(),
3 the third element in w. Because the first two elements in v and w are equal, boost::algorithm::misma
tch() returns, in first, an iterator to the end of v and, in second, an iterator to the third element of w. Because
first refers to the end of v, the iterator isn’t de-referenced, and there is no output.
Example 29.4 Using boost::algorithm::hex() and boost::algorithm::unhex()

#include <boost/algorithm/hex.hpp>
#include <vector>
#include <string>
#include <iterator>
#include <iostream>

using namespace boost::algorithm;

int main()
{

std::vector<char> v{'C', '+', '+'};
hex(v, std::ostream_iterator<char>{std::cout, ""});
std::cout << '\n';

std::string s = "C++";
std::cout << hex(s) << '\n';

std::vector<char> w{'4', '3', '2', 'b', '2', 'b'};
unhex(w, std::ostream_iterator<char>{std::cout, ""});
std::cout << '\n';

std::string t = "432b2b";
std::cout << unhex(t) << '\n';

}

Example 29.4 uses the two functions boost::algorithm::hex() and boost::algorithm::unhex().
These functions are designed after the identically named functions from the database system MySQL. They con-
vert characters to hexadecimal values or hexadecimal values to characters.
Example 29.4 passes the vector v with the characters “C”, “+”, and “+” to boost::algorithm::hex(). This
function expects an iterator as the second parameter to write the hexadecimal values to. The example writes 43
for “C” and 2B (twice) for the two instances of “+” to standard output. The second call to boost::algorithm:
:hex() does the same thing except that “C++” is passed as a string and “432B2B” is returned as a string.
boost::algorithm::unhex() is the opposite of boost::algorithm::hex(). If the array w from Exam-
ple 29.4 is passed with six hexadecimal values, each of the three pairs of values is interpreted as ASCII-Code.
The same happens with the second call to boost::algorithm::unhex() when six hexadecimal values are
passed as a string. In both cases C++ is written to standard output.
Boost.Algorithm provides even more algorithms. For example, there are several string matching algorithms that
search text efficiently. The documentation contains an overview of all available algorithms.

109

Chapter 30

Boost.Range

Boost.Range is a library that, on the first sight, provides algorithms similar to those provided by the standard li-
brary. For example, you will find the function boost::copy(), which does the same thing as std::copy().
However, std::copy() expects two parameters while boost::copy() expects a range.

30.1 Algorithms
You can think of a range as two iterators that refer to the beginning and end of a group of elements that you can
iterate over. Because all containers support iterators, every container can be thought of as a range. Since all al-
gorithms from Boost.Range expect a range as a first parameter, a container like std::vector can be passed
directly. You don’t have to call begin() and end() and then pass two iterators separately. This protects you
from mistakes such as passing the begin and end iterator in the wrong order or passing iterators that belong to
two different containers.
Example 30.1 Counting with boost::count()

#include <boost/range/algorithm.hpp>
#include <array>
#include <iostream>

int main()
{

std::array<int, 6> a{{0, 1, 0, 1, 0, 1}};
std::cout << boost::count(a, 0) << '\n';

}

Example 30.1 uses the algorithm boost::count(), which is defined in boost/range/algorithm.hpp.
This header file provides access to all of the algorithms for which counterparts exist in the standard library header
file algorithm.
All algorithms from Boost.Range require the first parameter to be a range. An object of type std::array can
be passed to boost::count() directly since containers are ranges. Because boost::count() is equivalent to
std::count(), you must pass in the value that the elements in the range will be compared with.
In Example 30.1, a contains three zeros, so 3 is written to standard output.
Example 30.2 introduces more algorithms which, like boost::count(), are similar to algorithms from the stan-
dard library.
Example 30.2 Range algorithms related to algorithms from the standard library

#include <boost/range/algorithm.hpp>
#include <boost/range/numeric.hpp>
#include <array>
#include <iterator>
#include <iostream>

int main()
{

std::array<int, 6> a{{0, 1, 2, 3, 4, 5}};
boost::random_shuffle(a);

110

http://www.boost.org/libs/range

CHAPTER 30. BOOST.RANGE 30.2. ADAPTORS

boost::copy(a, std::ostream_iterator<int>{std::cout, ","});
std::cout << "\n" << *boost::max_element(a) << '\n';
std::cout << boost::accumulate(a, 0) << '\n';

}

boost::random_shuffle() works like std::random_shuffle(), changing the order of elements in a
range randomly. Example 30.2 uses boost::random_shuffle() with a default random number generator.
However, you can pass a random number generator as a second parameter. That can be a random number genera-
tor either from the C++11 header file random or from Boost.Random.
boost::copy() works like std::copy(). boost::max_element() and boost::accumulate() work like
the identically named algorithms from the standard library. Like std::max_element(), boost::max_elem
ent() returns an iterator to the element with the greatest number.
The header file boost/range/numeric.hpp must be included for boost::accumulate(). Just as std:
:accumulate() is defined in numeric, boost::accumulate() is defined in boost/range/numeric.
hpp and not in boost/range/algorithm.hpp.
Boost.Range also provides a few algorithms without counterparts in the standard library.
Example 30.3 Range algorithms without counterparts in the standard library

#include <boost/range/algorithm_ext.hpp>
#include <array>
#include <deque>
#include <iterator>
#include <iostream>

int main()
{

std::array<int, 6> a{{0, 1, 2, 3, 4, 5}};
std::cout << std::boolalpha << boost::is_sorted(a) << '\n';
std::deque<int> d;
boost::push_back(d, a);
boost::remove_erase(d, 2);
boost::copy_n(d, 3, std::ostream_iterator<int>{std::cout, ","});

}

The algorithms used in Example 30.3 require the header file boost/range/algorithm_ext.hpp. This
header file provides access to algorithms that have no counterpart in the standard library.
boost::is_sorted() tests whether elements in a range are sorted. In Example 30.3, boost::is_sorted()
returns true because a is sorted. A predicate can be passed as the second parameter to boost::is_sorted()
to check, for example, whether a range is sorted in descending order.
boost::push_back() expects as its first parameter a container and as its second parameter a range. The con-
tainer must define the member function push_back(). All elements from the range are added to the container
using this member function, in the order specified by the range. Because d starts out empty, it will contain the
same numbers as a, in the same order, after the call to boost::push_back().
boost::remove_erase() removes the number 2 from d. This algorithm combines a call to the function std::
remove() and a call to the member function erase() of the respective container. Thanks to boost::remove_
erase(), you don’t need to find the iterator to the element you need to remove and then pass it to erase() in a
second step.
boost::copy_n() is similar to boost::copy(), but copies only as many elements as the number passed as
its second parameter. Example 30.3 only writes the first three numbers from d to standard output. Because 2 was
removed from d in the previous line, 0,1,3, is displayed.

30.2 Adaptors
The standard library provides several algorithms you can pass a predicate to. For example, the predicate passed
to std::count_if() determines which elements are counted. Boost.Range provides the similar function boost:
:count_if(). However, this algorithm is only provided for completeness because Boost.Range provides adap-
tors that make algorithms with predicates superfluous.
You can think of adaptors as filters. They return a new range based on another range. Data isn’t necessarily
copied. Since a range is just a pair of iterators, an adaptor returns a new pair. The pair can still be used to iter-

111

CHAPTER 30. BOOST.RANGE 30.2. ADAPTORS

ate over the original range but may, for example, skip certain elements. If boost::count() is used with such
an adaptor, boost::count_if() is no longer required. Algorithms don’t have to be defined multiple times just
so they can be called with and without predicates.
The difference between algorithms and adaptors is that algorithms iterate over a range and process data, while
adaptors return a new range – new iterators – that determines what elements the iteration returns. However, no
iteration is executed. An algorithm must be called first.
Example 30.4 Filtering a range with boost::adaptors::filter()

#include <boost/range/algorithm.hpp>
#include <boost/range/adaptors.hpp>
#include <array>
#include <iterator>
#include <iostream>

int main()
{

std::array<int, 6> a{{0, 5, 2, 1, 3, 4}};
boost::copy(boost::adaptors::filter(a, [](int i){ return i > 2; }),

std::ostream_iterator<int>{std::cout, ","});
}

Example 30.4 uses an adaptor that can filter ranges. As you can see, the adaptor is just a function. boost::ada
ptors::filter() expects as its first parameter a range to filter and as its second parameter a predicate. The
predicate in Example 30.4 removes all numbers from the range that aren’t greater than 2.
boost::adaptors::filter() does not change the range a, it returns a new range. Since a range isn’t much
different from a pair of iterators, the new range also refers to a. However, the iterators for the new range skip all
numbers that are less than or equal to 2.
Example 30.4 writes 5,3,4 to standard output.
Example 30.5 uses two adaptors, boost::adaptors::keys() and boost::adaptors::values(), to access
keys and values in a container of type std::map. It also shows how adaptors can be nested. Because m stores
pointers to the values to be printed, rather than the values themselves, the range returned by boost::adaptors:
:values() is passed to boost::adaptors::indirect(). This adaptor can always be used when a range
consists of pointers, but an iteration should return the values the pointers refer to. That’s why Example 30.5
writes a,b,c,0,1,2, to standard output.
Example 30.5 Using keys(), values() and indirect()

#include <boost/range/algorithm.hpp>
#include <boost/range/adaptors.hpp>
#include <array>
#include <map>
#include <string>
#include <utility>
#include <iterator>
#include <iostream>

int main()
{

std::array<int, 3> a{{0, 1, 2}};
std::map<std::string, int*> m;
m.insert(std::make_pair("a", &a[0]));
m.insert(std::make_pair("b", &a[1]));
m.insert(std::make_pair("c", &a[2]));

boost::copy(boost::adaptors::keys(m),
std::ostream_iterator<std::string>{std::cout, ","});

boost::copy(boost::adaptors::indirect(boost::adaptors::values(m)),
std::ostream_iterator<int>{std::cout, ","});

}

Example 30.6 introduces an adaptor for strings. You can use boost::adaptors::tokenize() to get a range
from a string with the help of a regular expression. You pass a string and a regular expression of the type boost:
:regex to boost::adaptors::tokenize(). In addition, you need to pass a number that refers to a group in

112

CHAPTER 30. BOOST.RANGE 30.3. HELPER CLASSES AND FUNCTIONS

the regular expression and a flag. If no group is used, you can pass 0. The flag boost::regex_constants:
:match_default selects the default settings for regular expressions. You can also pass other flags. For exam-
ple, you can use boost::regex_constants::match_perl if you want the regular expression to be applied
according to the rules for the programming language Perl.
Example 30.6 boost::adaptors::tokenize() – an adaptor for strings

#include <boost/range/algorithm.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/regex.hpp>
#include <string>
#include <iostream>

int main()
{

std::string s = "The Boost C++ Libraries";
boost::regex expr{"[\\w+]+"};
boost::copy(boost::adaptors::tokenize(s, expr, 0,

boost::regex_constants::match_default),
std::ostream_iterator<std::string>{std::cout, ","});

}

30.3 Helper Classes and Functions
The algorithms and adaptors provided by Boost.Range are based on templates. You don’t have to transform a
container to a range to pass it to an algorithm or adaptor. However, Boost.Range defines a few range classes,
with boost::iterator_range being the most important. boost::iterator_range is required because
adaptors and a few algorithms return ranges that must have a type. In addition, helper functions exist that cre-
ate ranges whose iterators contain all the data required for an iteration. The iterators from these ranges don’t refer
to a container or to another data structure. A class like boost::iterator_range is used here, too.
Example 30.7 Creating a range for integers with boost::irange()

#include <boost/range/algorithm.hpp>
#include <boost/range/irange.hpp>
#include <iostream>

int main()
{

boost::integer_range<int> ir = boost::irange(0, 3);
boost::copy(ir, std::ostream_iterator<int>{std::cout, ","});

}

Example 30.7 uses the function boost::irange(). This function creates a range for integers without having to
use a container or another data structure. You only pass a lower and upper bound to boost::irange() with the
upper bound being exclusive.
boost::irange() returns a range of type boost::integer_range. This class is derived from boost::ite
rator_range. boost::iterator_range is a template that expects an iterator type as its sole template param-
eter. The iterator used by boost::irange() is tightly coupled to that function and is an implementation detail.
Thus, the iterator type isn’t known and can’t be passed as a template parameter to boost::iterator_range.
However, boost::integer_range only expects an integer type, which makes it easier to use than if you had to
pass an iterator type.
Example 30.7 writes 0,1,2 to standard output.
Example 30.8 introduces the function boost::istream_range(), which creates a range for an input stream.
The function returns the range as a boost::iterator_range. This means that an iterator type has to be passed
as a template parameter.
When you start Example 30.8, type a number, and press Enter, the number is printed in the next line. If you type
another number and press Enter, that number is printed. The range returned by boost::istream_range()
makes it possible for boost::copy() to iterate over all entered numbers and write them to std::cout.
You can terminate the program any time by typing Ctrl+C.

113

CHAPTER 30. BOOST.RANGE 30.3. HELPER CLASSES AND FUNCTIONS

Example 30.8 Creating a range for an input stream with boost::istream_range()

#include <boost/range/algorithm.hpp>
#include <boost/range/istream_range.hpp>
#include <iterator>
#include <iostream>

int main()
{

boost::iterator_range<std::istream_iterator<int>> ir =
boost::istream_range<int>(std::cin);

boost::copy(ir, std::ostream_iterator<int>{std::cout, "\n"});
}

Besides boost::iterator_range, Boost.Range provides the class boost::sub_range, which is derived
from boost::iterator_range. boost::sub_range is a template like boost::iterator_range. How-
ever, boost::sub_range expects the type of the range as a template parameter, not an iterator type. This can
simplify usage.
Example 30.9 Creating ranges more easily with boost::sub_range()

#include <boost/range/algorithm.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/range/sub_range.hpp>
#include <array>
#include <iterator>
#include <iostream>

int main()
{

std::array<int, 6> a{{0, 1, 2, 3, 4, 5}};
boost::iterator_range<std::array<int, 6>::iterator> r1 =

boost::random_shuffle(a);
boost::sub_range<std::array<int, 6>> r2 =

boost::random_shuffle(r1);
boost::copy(r2, std::ostream_iterator<int>{std::cout, ","});

}

A few algorithms from Boost.Range return a range – for example, boost::random_shuffle(). This algo-
rithm directly modifies the range passed to it by reference and returns the modified range. In Example 30.9,
boost::random_shuffle() is called twice, so array a is randomly shuffled twice.
For the first return value, the example uses boost::iterator_range; for the second return value, it uses boost:
:sub_range. The usage of both classes only differs in the template parameter. Not only can boost::sub_ra
nge be instantiated more easily, but it also provides the type definition const_iterator.

114

Chapter 31

Boost.Graph

Boost.Graph provides tools to work with graphs. Graphs are two-dimensional point clouds with any number of
lines between points. A subway map is a good example of a graph. Subway stations are points, which are con-
nected by subway lines.
The graph theory is the field of mathematics that researches graphs. Graph theory tries to answer questions such
as how to determine the shortest path between two points. Auto navigation systems have to solve that problem
to guide drivers to their desired location using the shortest path. Graphs are very important in practice because
many problems can be modelled with them.
Boost.Graph provides containers to define graphs. However, even more important are the algorithms Boost.Graph
offers to operate on graphs, for example, to find the shortest path. This chapter introduces you to the containers
and algorithms in Boost.Graph.

31.1 Vertices and Edges
Graphs consist of points and lines. To create a graph, you have to define a set of points and any lines between
them. Example 31.1 contains a first simple graph consisting of four points and no lines.
Boost.Graph provides three containers to define graphs. The most important container is boost::adjacency_l
ist which is used in nearly all of the examples in this chapter. To use this class, include the header file boost/
graph/adjacency_list.hpp. If you want to use another container, you must include another header file.
There is no master header file to get access to all classes and functions from Boost.Graph.
Example 31.1 A graph of type boost::adjacency_list with four vertices

#include <boost/graph/adjacency_list.hpp>
#include <iostream>

int main()
{

boost::adjacency_list<> g;

boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v3 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v4 = boost::add_vertex(g);

std::cout << v1 << ", " << v2 << ", " << v3 << ", " << v4 << '\n';
}

boost::adjacency_list is a template that is instantiated with default parameters in Example 31.1. Later, you
will see what parameters you can pass. This class is defined in boost. All classes and functions from Boost.Graph
are defined in this namespace.
To add four points to the graph, the function boost::add_vertex() has to be called four times.
boost::add_vertex() is a free-standing function and not a member function of boost::adjacency_list.
You will find there are many free-standing functions in Boost.Graph that could have been implemented as mem-
ber functions. Boost.Graph is designed to be more of a generic library than an object-oriented library.

115

http://www.boost.org/libs/graph

CHAPTER 31. BOOST.GRAPH 31.1. VERTICES AND EDGES

boost::add_vertex() adds a point to a graph. In graph theory, a point is called vertex, which explains the
function name.
boost::add_vertex() returns an object of type boost::adjacency_list::vertex_descriptor. This
object represents a newly added point in the graph. You can write the objects to standard output as shown in Ex-
ample 31.1. The example displays 0, 1, 2, 3.
Example 31.1 identifies points through positive integers. These numbers are indexes to a vector that is used in-
ternally in boost::adjacency_list. It’s no surprise that boost::add_vertex() returns 0, 1, 2, and 3 since
every call adds another point to the vector.
std::vector is the container boost::adjacency_list uses by default to store points. In this case, boost:
:adjacency_list::vertex_descriptor is a type definition for std::size_t. Because other containers can be
used to store points, boost::adjacency_list::vertex_descriptor isn’t necessarily always std::size_t.
Example 31.2 Accessing vertices with boost::vertices()

#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream>

int main()
{

boost::adjacency_list<> g;

boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g);

std::pair<boost::adjacency_list<>::vertex_iterator,
boost::adjacency_list<>::vertex_iterator> vs = boost::vertices(g);

std::copy(vs.first, vs.second,
std::ostream_iterator<boost::adjacency_list<>::vertex_descriptor>{

std::cout, "\n"});
}

To get all points from a graph, call boost::vertices(). This function returns two iterators of type boost:
:adjacency_list::vertex_iterator, which refer to the beginning and ending points. The iterators are
returned in a std::pair. Example 31.2 uses the iterators to write all points to standard output. This example
displays the number 0, 1, 2, and 3, just like the previous example.
Example 31.3 explains how points are connected with lines.
You call boost::add_edge() to connect two points in a graph. You have to pass the points and the graph as
parameters. In graph theory, lines between points are called edges – that’s why the function is called boost::
add_edge().
boost::add_edge() returns a std::pair. first provides access to the line. second is a bool variable that
indicates whether the line was successfully added. If you run Example 31.3, you’ll see that p.second is set to
true for each call to boost::add_edge(), and a new line is added to the graph with each call.
boost::edges() provides access to all lines in a graph. Like boost::vertices(), boost::edges() re-
turns two iterators that refer to the beginning and ending lines. Example 31.3 writes all lines to standard output.
The example displays (0,1), (0,1) and (1,0).
Example 31.3 Accessing edges with boost::edges()

#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream>

int main()
{

boost::adjacency_list<> g;

116

CHAPTER 31. BOOST.GRAPH 31.1. VERTICES AND EDGES

boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g);

std::pair<boost::adjacency_list<>::edge_descriptor, bool> p =
boost::add_edge(v1, v2, g);

std::cout.setf(std::ios::boolalpha);
std::cout << p.second << '\n';

p = boost::add_edge(v1, v2, g);
std::cout << p.second << '\n';

p = boost::add_edge(v2, v1, g);
std::cout << p.second << '\n';

std::pair<boost::adjacency_list<>::edge_iterator,
boost::adjacency_list<>::edge_iterator> es = boost::edges(g);

std::copy(es.first, es.second,
std::ostream_iterator<boost::adjacency_list<>::edge_descriptor>{

std::cout, "\n"});
}

The output shows that the graph has three lines. All three connect the first two points – those with the indexes 0
and 1. The output also shows where the lines start and end. Two lines start at the first point, one at the second.
The direction of the lines depends on the order of the parameters passed to boost::add_edge().
As you see, you can have multiple lines between the same two points. However, this feature can be deactivated.
Example 31.4 doesn’t instantiate boost::adjacency_list with default template parameters. Three param-
eters, called selectors, are passed in. By convention, the names of selectors end in S. These selectors determine
what types will be used in boost::adjacency_list to store points and lines.
Example 31.4 boost::adjacency_list with selectors
#include <boost/graph/adjacency_list.hpp>
#include <utility>
#include <algorithm>
#include <iterator>
#include <iostream>

int main()
{

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g;

boost::adjacency_list<>::vertex_descriptor v1 = boost::add_vertex(g);
boost::adjacency_list<>::vertex_descriptor v2 = boost::add_vertex(g);
boost::add_vertex(g);
boost::add_vertex(g);

std::pair<graph::edge_descriptor, bool> p =
boost::add_edge(v1, v2, g);

std::cout.setf(std::ios::boolalpha);
std::cout << p.second << '\n';

p = boost::add_edge(v1, v2, g);
std::cout << p.second << '\n';

p = boost::add_edge(v2, v1, g);
std::cout << p.second << '\n';

std::pair<graph::edge_iterator,
graph::edge_iterator> es = boost::edges(g);

117

CHAPTER 31. BOOST.GRAPH 31.1. VERTICES AND EDGES

std::copy(es.first, es.second,
std::ostream_iterator<graph::edge_descriptor>{std::cout, "\n"});

}

By default, boost::adjacency_list uses std::vector for points and lines. By passing boost::setS as
the first template parameter in Example 31.4, std::set is selected as the container for lines. Because std:
:set doesn’t support duplicates, it is not possible to add the same line using boost::add_edge() multiple
times. Thus, the example only displays (0,1) once.
The second template parameter tells boost::adjacency_list which class should be used for points. In Ex-
ample 31.4, boost::vecS is passed. This is the default value for the second template parameter. It is only set so
that you can pass a third template parameter.
The third template parameter determines whether lines are directed or undirected. The default is boost::direc
tedS, which means all lines are directed and can be drawn as arrows. Lines can only be crossed in one direction.
boost::undirectedS is used in Example 31.4. This selector makes all lines undirected, which means it is
possible to cross a line in any direction. It doesn’t matter which point is the start and which is the end. This is
another reason why the graph in Example 31.4 contains only one line. The third call to the function boost:
:add_edge() swaps the start and end points, but because lines in this example are undirected, this line is the
same as the previous lines and, therefore, isn’t added.
Boost.Graph offers more selectors, including boost::listS, boost::mapS, and boost::hash_setS. boost:
:bidirectionalS can be used to make lines bidirectional. This selector is similar to boost::undirectedS,
but in this case, start and end points matter. If you use boost::bidirectionalS in Example 31.4, the third
call to boost::add_edge() will add a line to the graph.
Example 31.5 shows a simpler method for adding points and lines to a graph.
Example 31.5 Creating indexes automatically with boost::add_edge()

#include <boost/graph/adjacency_list.hpp>
#include <tuple>
#include <algorithm>
#include <iterator>
#include <iostream>

int main()
{

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g;

enum { topLeft, topRight, bottomRight, bottomLeft };

boost::add_edge(topLeft, topRight, g);
boost::add_edge(topRight, bottomRight, g);
boost::add_edge(bottomRight, bottomLeft, g);
boost::add_edge(bottomLeft, topLeft, g);

graph::edge_iterator it, end;
std::tie(it, end) = boost::edges(g);
std::copy(it, end,

std::ostream_iterator<graph::edge_descriptor>{std::cout, "\n"});
}

Example 31.5 defines a graph consisting of four points. You can visualize the graph as a map with four fields,
each represented by a point. The points are given the names topLeft, topRight, bottomRight, and bottomL
eft. Because the names are assigned in an enumeration, each will have a numeric value that is used as an index.
It is possible to define a graph without calling boost::add_vertex(). Boost.Graph adds missing points to a
graph automatically if the points passed to boost::add_edge() don’t exist. The multiple calls to boost::add
_edge() in Example 31.5 define not only lines but also add the four points required for the lines to the graph.
Please note how std::tie() is used to store the iterators returned in a std::pair from boost::edges() in
it and end. std::tie() has been part of the standard library since C++11.
The graph in Example 31.5 is a map with four fields. To get from the top left to the bottom right, one can either
cross the field in the top right or the one in the bottom left. There is no line between opposite fields. Thus it’s not
possible to go directly from the top left to the bottom right. All examples in this chapter use this graph.

118

CHAPTER 31. BOOST.GRAPH 31.1. VERTICES AND EDGES

Example 31.6 boost::adjacent_vertices() and boost::out_edges()

#include <boost/graph/adjacency_list.hpp>
#include <tuple>
#include <algorithm>
#include <iterator>
#include <iostream>

int main()
{

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g;

enum { topLeft, topRight, bottomRight, bottomLeft };

boost::add_edge(topLeft, topRight, g);
boost::add_edge(topRight, bottomRight, g);
boost::add_edge(bottomRight, bottomLeft, g);
boost::add_edge(bottomLeft, topLeft, g);

graph::adjacency_iterator vit, vend;
std::tie(vit, vend) = boost::adjacent_vertices(topLeft, g);
std::copy(vit, vend,

std::ostream_iterator<graph::vertex_descriptor>{std::cout, "\n"});

graph::out_edge_iterator eit, eend;
std::tie(eit, eend) = boost::out_edges(topLeft, g);
std::for_each(eit, eend,

[&g](graph::edge_descriptor it)
{ std::cout << boost::target(it, g) << '\n'; });

}

Example 31.6 introduces functions to gain additional information on points. boost::adjacent_vertices()
returns a pair of iterators that refer to points a point connects to. You call boost::out_edges() if you want to
access all outgoing lines from a point. boost::in_edges() accesses all ingoing lines. With undirected lines, it
doesn’t matter which of the two functions is called.
boost::target() returns the end point of a line. The start point is returned with boost::source().
Example 31.6 writes 1 and 3, the indexes of the top right and bottom left fields, to standard output twice. boost:
:adjacent_vertices(), is called with topLeft and returns and displays the indexes of the top right and
bottom left fields. topLeft is also passed to boost::out_edges() to retrieve the outgoing lines. Because
boost::target() is called on every outgoing line with std::for_each(), the indexes of the top right and
bottom left fields are displayed twice.
Example 31.7 illustrates how to define a graph with boost::adjacency_list without having to call boost::
add_edge() for every line.
Example 31.7 Initializing boost::adjacency_list with lines

#include <boost/graph/adjacency_list.hpp>
#include <array>
#include <utility>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

119

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g{edges.begin(), edges.end(), 4};

std::cout << boost::num_vertices(g) << '\n';
std::cout << boost::num_edges(g) << '\n';

g.clear();
}

You can pass iterators to the constructor of boost::adjacency_list that refer to objects of type std::pair<int,
int>, which define lines. If you pass iterators, you also have to supply a third parameter that determines the total
number of points in the graph. The graph will contain at least the points required for the lines. The third parame-
ter let’s you add points to the graph that aren’t connected to other points.
Example 31.7 uses the functions boost::num_vertices() and boost::num_edges(), which return the
number of points and lines, respectively. The example displays 4 twice.
Example 31.7 calls boost::adjacency_list::clear(). This member function removes all points and lines.
It is a member function of boost::adjacency_list and not a free-standing function.

31.2 Algorithms
Algorithms from Boost.Graph resemble those from the standard library – they are generic and very flexible.
However, it’s not always immediately clear how they should be used.
Example 31.8 Visiting points from inside to outside with breadth_first_search()

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/array.hpp>
#include <array>
#include <utility>
#include <iterator>
#include <algorithm>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g{edges.begin(), edges.end(), 4};

boost::array<int, 4> distances{{0}};

boost::breadth_first_search(g, topLeft,
boost::visitor(

boost::make_bfs_visitor(
boost::record_distances(distances.begin(),

boost::on_tree_edge{}))));

std::copy(distances.begin(), distances.end(),
std::ostream_iterator<int>{std::cout, "\n"});

120

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

}

Example 31.8 uses the algorithm boost::breadth_first_search() to visit points from inside to outside.
The algorithm starts at the point passed as the second parameter. It first visits all points that can be reached di-
rectly from that point, working like a wave.
boost::breadth_first_search() doesn’t return a specific result. The algorithm just visits points. Whether
data is collected and stored depends on the visitors passed to boost::breadth_first_search().
Visitors are objects whose member functions are called when a point is visited. By passing visitors to an algo-
rithm like boost::breadth_first_search(), you decide what should happen when a point is visited. Visi-
tors are like function objects that can be passed to algorithms of the standard library.
Example 31.8 uses a visitor that records distances. A distance is the number of lines that have to be crossed to
get from one point to another, starting at the point passed to boost::breadth_first_search() as the second
parameter. Boost.Graph provides the helper function boost::record_distances() to create the visitor. A
property map and a tag also have to be passed.
Property maps store properties for points or lines. Boost.Graph describes the concept of property maps. Since a
pointer or iterator is taken as the beginning of a property map, it isn’t important to understand property maps in
detail. In Example 31.8 the beginning of the array distances is passed with distances.begin() to boost::
record_distances(). This is sufficient for the array distances to be used as a property map. However, it is
important that the size of the array isn’t smaller than the number of points in the graph. After all, the distance to
each and every point in the graph needs to be stored.
Please note that distances is based on boost::array and not on std::array. Using std::array would
lead to a compiler error.
Depending on the algorithm, there are different events. The second parameter passed to boost::record_dis
tances() specifies which events the visitor should be notified about. Boost.Graph defines tags that are empty
classes to give events names. The tag boost::on_tree_edge in Example 31.8 specifies that a distance should
be recorded when a new point has been found.
Events depend on the algorithm. You have to check the documentation on algorithms to find out which events are
supported and which tags you can use.
A visitor created by boost::record_distances() is algorithm independent, so you can use boost::record
_distances() with other algorithms. An adapter is used to bind an algorithm and a visitor. Example 31.8 calls
boost::make_bfs_visitor() to create this adapter. This helper function returns a visitor as expected by the
algorithm boost::breadth_first_search(). This visitor defines member functions that fit the events the
algorithm supports. For example, the visitor returned by boost::make_bfs_visitor() defines the member
function tree_edge(). If a visitor that is defined with the tag boost::on_tree_edge is passed to boost::
make_bfs_visitor() (as in Example 31.8), the visitor is notified when tree_edge() is called. This lets you
use visitors with different algorithms without those visitors having to define all of the member functions expected
by all algorithms.
The adapter returned by boost::make_bfs_visitor() can’t be passed directly to the algorithm boost::bre
adth_first_search(). It has to be wrapped with boost::visitor() and then passed as a third parameter.
There are two variants of algorithms like boost::breadth_first_search(). One variant expects that every
parameter the algorithm supports will be passed. Another variant supports something similar to named param-
eters. It’s typically easier to use this second variant because only the parameters you’re interested in have to be
passed. Many parameters don’t have to be passed because algorithms use default values.
Example 31.8 uses the variant of boost::breadth_first_search() that expects named parameters. The
first two parameters are the graph and the start point, which are required. However, the third parameter can be
nearly everything. In Example 31.8 a visitor needs to be passed. For that to work, the adapter returned by boost:
:make_bfs_visitor() is named using boost::visitor(). Now, it’s clear that the third parameter is a visi-
tor. You’ll see in the following examples how other parameters are passed by name to boost::breadth_first
_search().
Example 31.8 displays the numbers 0, 1, 2, and 1. These are the distances to all points from the top left. The top
right field – the one with the index 1 – is only one step away. The bottom right field – the one with the index 2 –
is two steps away. The bottom left field – the one with the index 3 – is again only one step away. The number 0
which is printed first refers to the top left field. Since it’s the start point that was passed to boost::breadth_fi
rst_search(), zero steps are required to reach it.
boost::breadth_first_search() doesn’t set the elements in the array, it just increases the stored values.
Therefore, you must initialize all elements in the array distances before you start.
Example 31.9 illustrates how to find the shortest path.

121

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

Example 31.9 displays 0, 1, and 2. This is the shortest path from top left to bottom right. It leads over the top
right field although the path over the bottom left field would be equally short.
boost::breadth_first_search() is used again – this time to find the shortest path. As you already know,
this algorithm just visits points. To get a description of the shortest path, an appropriate visitor must be used. Ex-
ample 31.9 calls boost::record_predecessors() to get one.
boost::record_predecessors() returns a visitor to store the predecessor of every point. Whenever boost:
:breadth_first_search() visits a new point, the previous point is stored in the property map passed to
boost::record_predecessors(). As boost::breadth_first_search() visits points from the inside
to the outside, the shortest path is found – starting at the point passed as a second parameter to boost::breadth
_first_search(). Example 31.9 finds the shortest paths from all points in the graph to the bottom right.
Example 31.9 Finding paths with breadth_first_search()

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/array.hpp>
#include <array>
#include <utility>
#include <algorithm>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g{edges.begin(), edges.end(), 4};

boost::array<int, 4> predecessors;
predecessors[bottomRight] = bottomRight;

boost::breadth_first_search(g, bottomRight,
boost::visitor(

boost::make_bfs_visitor(
boost::record_predecessors(predecessors.begin(),

boost::on_tree_edge{}))));

int p = topLeft;
while (p != bottomRight)
{

std::cout << p << '\n';
p = predecessors[p];

}
std::cout << p << '\n';

}

After boost::breadth_first_search() returns, the property map predecessors contains the predecessor
of every point. To find the first field when travelling from the top left to the bottom right, the element with the
index 0 – the index of the top left field – is accessed in predecessors. The value found in predecessors is 1,
which means the next field is at the top right. Accessing predecessors with the index 1 returns the next field.
In Example 31.9 that’s the bottom right field – the one with the index 2. That way it’s possible to find the points
iteratively in huge graphs to get from a start to an end point.
Example 31.10 Finding distances and paths with breadth_first_search()

122

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/visitors.hpp>
#include <boost/array.hpp>
#include <array>
#include <utility>
#include <algorithm>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

typedef boost::adjacency_list<boost::setS, boost::vecS,
boost::undirectedS> graph;

graph g{edges.begin(), edges.end(), 4};

boost::array<int, 4> distances{{0}};
boost::array<int, 4> predecessors;
predecessors[bottomRight] = bottomRight;

boost::breadth_first_search(g, bottomRight,
boost::visitor(

boost::make_bfs_visitor(
std::make_pair(

boost::record_distances(distances.begin(),
boost::on_tree_edge()),

boost::record_predecessors(predecessors.begin(),
boost::on_tree_edge{})))));

std::for_each(distances.begin(), distances.end(),
[](int d){ std::cout << d << '\n'; });

int p = topLeft;
while (p != bottomRight)
{

std::cout << p << '\n';
p = predecessors[p];

}
std::cout << p << '\n';

}

Example 31.10 shows how boost::breadth_first_search() is used with two visitors. To use two visitors,
you need to put them in a pair with std::make_pair(). If more than two visitors are needed, the pairs have to
be nested. Example 31.10 does the same thing as Example 31.8 and Example 31.9 together.
boost::breadth_first_search() can only be used if every line has the same weight. This means the time
taken to cross any line between points is always the same. If lines are weighted, meaning that each line may re-
quire a different amount of time to traverse, then you need to use a different algorithm to find the shortest path.
Example 31.11 Finding paths with dijkstra_shortest_paths()

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/array.hpp>
#include <array>

123

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

#include <utility>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

typedef boost::adjacency_list<boost::listS, boost::vecS,
boost::undirectedS, boost::no_property,
boost::property<boost::edge_weight_t, int>> graph;

std::array<int, 4> weights{{2, 1, 1, 1}};

graph g{edges.begin(), edges.end(), weights.begin(), 4};

boost::array<int, 4> directions;
boost::dijkstra_shortest_paths(g, bottomRight,

boost::predecessor_map(directions.begin()));

int p = topLeft;
while (p != bottomRight)
{

std::cout << p << '\n';
p = directions[p];

}
std::cout << p << '\n';

}

Example 31.11 uses boost::dijkstra_shortest_paths() to find the shortest paths to the bottom right.
This algorithm is used if lines are weighted. Example 31.11 assumes that it takes twice as long to cross the line
from the top left to the top right as it takes to cross any other line.
Before boost::dijkstra_shortest_paths() can be used, weights have to be assigned to lines. This is done
with the array weights. The elements in the array correspond to the lines in the graph. Because the line from the
top left to the top right is first, the first element in weights is set to a value twice as big as all others.
To assign weights to lines, the iterator to the beginning of the array weights is passed as the third parameter to
the constructor of the graph. This third parameter can be used to initialize properties of lines. This only works if
properties have been defined for lines.
Example 31.11 passes additional template parameters to boost::adjacency_list. The fourth and fifth tem-
plate parameter specify if points and lines have properties and what those properties are. You can assign proper-
ties to both lines and points.
By default, boost::adjacency_list uses boost::no_property, which means that neither points nor lines
have properties. In Example 31.11, boost::no_property is passed as a fourth parameter to specify no proper-
ties for points. The fifth parameter uses boost::property to define a bundled property.
Bundled properties are properties that are stored internally in a graph. Because it’s possible to define multiple
bundled properties, boost::property expects a tag to define each property. Boost.Graph provides some tags,
such as boost::edge_weight_t, to define frequently used properties that are automatically recognized and
used by algorithms. The second template parameter passed to boost::property is the type of the property. In
Example 31.11 weights are int values.
Example 31.11 works because boost::dijkstra_shortest_paths() automatically uses the bundled prop-
erty of type boost::edge_weight_t.
Note that no visitor is passed to boost::dijkstra_shortest_paths(). This algorithm doesn’t just visit
points. It looks for shortest paths – that’s why it’s called boost::dijkstra_shortest_paths(). You don’t
need to think about events or visitors. You only need to pass a container to store the predecessor of every point.
If you use the variant of boost::dijkstra_shortest_paths() that expects named parameters, as in Ex-

124

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

ample 31.11, pass the container with boost::predecessor_map(). This is a helper function which expects a
pointer or an iterator to the beginning of an array.
Example 31.11 displays 0, 3, and 2: The shortest path from top left to bottom right leads over the bottom left
field. The path over the top right field has a greater weight than the other possibilities.
Example 31.12 User-defined properties with dijkstra_shortest_paths()

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/array.hpp>
#include <array>
#include <utility>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

struct edge_properties
{

int weight;
};

typedef boost::adjacency_list<boost::listS, boost::vecS,
boost::undirectedS, boost::no_property,
edge_properties> graph;

graph g{edges.begin(), edges.end(), 4};

graph::edge_iterator it, end;
boost::tie(it, end) = boost::edges(g);
g[*it].weight = 2;
g[*++it].weight = 1;
g[*++it].weight = 1;
g[*++it].weight = 1;

boost::array<int, 4> directions;
boost::dijkstra_shortest_paths(g, bottomRight,

boost::predecessor_map(directions.begin()).
weight_map(boost::get(&edge_properties::weight, g)));

int p = topLeft;
while (p != bottomRight)
{

std::cout << p << '\n';
p = directions[p];

}
std::cout << p << '\n';

}

Example 31.12 works like the previous one and displays the same numbers, but it uses a user-defined class, edge
_properties, rather than a predefined property.
edge_properties defines the member variable weight to store the weight of a line. It is possible to add more
member variables if other properties are required.
You can access user-defined properties if you use the descriptor of lines as an index for the graph. Thus, the
graph behaves like an array. You get the descriptors from the line iterators that are returned from boost::edges().

125

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

That way a weight can be assigned to every line.
To make boost::dijkstra_shortest_paths() understand that weights are stored in weight in edge_pr
operties, another named parameter has to be passed. This is done with weight_map(). Note that weight_
map() is a member function of the object returned from boost::predecessor_map(). There is also a free-
standing function called boost::weight_map(). If you need to pass multiple named parameters, you have to
call a member function on the first named parameter (the one that was returned by the free-standing function).
That way all parameters are packed into one object that is then passed to the algorithm.
To tell boost::dijkstra_shortest_paths() that weight in edge_properties contains the weights, a
pointer to that property is passed. It isn’t passed to weight_map() directly. Instead it is passed in an object
created with boost::get(). Now the call is complete, and boost::dijkstra_shortest_paths() knows
which property to access to get the weights.
Example 31.13 Initializing user-defined properties at graph definition
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/array.hpp>
#include <array>
#include <utility>
#include <iostream>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

struct edge_properties
{

int weight;
};

typedef boost::adjacency_list<boost::listS, boost::vecS,
boost::undirectedS, boost::no_property,
edge_properties> graph;

boost::array<edge_properties, 4> props{{2, 1, 1, 1}};

graph g{edges.begin(), edges.end(), props.begin(), 4};

boost::array<int, 4> directions;
boost::dijkstra_shortest_paths(g, bottomRight,

boost::predecessor_map(directions.begin()).
weight_map(boost::get(&edge_properties::weight, g)));

int p = topLeft;
while (p != bottomRight)
{

std::cout << p << '\n';
p = directions[p];

}
std::cout << p << '\n';

}

It’s possible to initialize user-defined properties when a graph is defined. You only have to pass an iterator as the
third parameter to the constructor of boost::adjacency_list, which refers to objects of the type of the user-
defined property. Thus, you don’t need to access properties of lines through descriptors. Example 31.13 works
like the previous one and displays the same result.

126

CHAPTER 31. BOOST.GRAPH 31.2. ALGORITHMS

Example 31.14 Random paths with random_spanning_tree()

#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/random_spanning_tree.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/array.hpp>
#include <array>
#include <utility>
#include <random>
#include <iostream>
#include <ctime>
#include <cstdint>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

struct edge_properties
{

int weight;
};

typedef boost::adjacency_list<boost::listS, boost::vecS,
boost::undirectedS> graph;

graph g{edges.begin(), edges.end(), 4};

boost::array<int, 4> predecessors;

std::mt19937 gen{static_cast<uint32_t>(std::time(0))};
boost::random_spanning_tree(g, gen,

boost::predecessor_map(predecessors.begin()).
root_vertex(bottomLeft));

int p = topRight;
while (p != -1)
{

std::cout << p << '\n';
p = predecessors[p];

}
}

The algorithm introduced in Example 31.14 finds random paths. boost::random_spanning_tree() is sim-
ilar to boost::dijkstra_shortest_paths(). It returns the predecessors of points in a container that is
passed with boost::predecessor_map. In contrast to boost::dijkstra_shortest_paths(), the start-
ing point isn’t passed directly as a parameter to boost::random_spanning_tree(). It must be passed as a
named parameter. That’s why root_vertex() is called on the object of type boost::predecessor_map. Ex-
ample 31.14 finds random paths to the bottom left field.
Because boost::random_spanning_tree() is looking for a random path, a random number generator has
to be passed as the second parameter. Example 31.14 uses std::mt19937, which has been part of the standard
library since C++11. You could also use a random number generator from Boost.Random.
Example 31.14 displays either 1, 0, and 3 or 1, 2, and 3. 1 is the top right field, 3 the bottom left field. There are
only two possible paths from the top right field to the bottom left field: through the top left field or through the
bottom right field. boost::random_spanning_tree() must return one of these two paths.

127

CHAPTER 31. BOOST.GRAPH 31.3. CONTAINERS

31.3 Containers
All examples in this chapter so far have used boost::adjacency_list to define graphs. This section intro-
duces the two other graph containers provided by Boost.Graph: boost::adjacency_matrix and boost::
compressed_sparse_row_graph.

Note

There is a missing include in boost/graph/adjacency_matrix.hpp in Boost 1.56.0.
To compile Example 31.15 with Boost 1.56.0, include boost/functional/hash.hpp
before boost/graph/adjacency_matrix.hpp.

Example 31.15 Graphs with boost::adjacency_matrix

#include <boost/graph/adjacency_matrix.hpp>
#include <array>
#include <utility>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

typedef boost::adjacency_matrix<boost::undirectedS> graph;
graph g{edges.begin(), edges.end(), 4};

}

boost::adjacency_matrix is used like boost::adjacency_list (see Example 31.15). However, the two
template parameters that pass selectors don’t exist with boost::adjacency_matrix. With boost::adjac
ency_matrix, no selectors, such as boost::vecS and boost::setS, are used. boost::adjacency_mat
rix stores the graph in a matrix, and the internal structure is hardcoded. You can think of the matrix as a two-
dimensional table: the table is a square with as many rows and columns as the graph has points. A line is created
by marking the cell where the row and column that correspond with the two end points of the line intersect.
The internal structure of boost::adjacency_matrix makes it possible to add and remove lines quickly. How-
ever, memory consumption is higher. The rule of thumb is to use boost::adjacency_list when there are
relatively few lines compared to points. The more lines there are, the more it makes sense to use boost::adjac
ency_matrix.
Example 31.16 Graphs with boost::compressed_sparse_row_graph

#include <boost/graph/compressed_sparse_row_graph.hpp>
#include <array>
#include <utility>

int main()
{

enum { topLeft, topRight, bottomRight, bottomLeft };

std::array<std::pair<int, int>, 4> edges{{
std::make_pair(topLeft, topRight),
std::make_pair(topRight, bottomRight),
std::make_pair(bottomRight, bottomLeft),
std::make_pair(bottomLeft, topLeft)

}};

128

CHAPTER 31. BOOST.GRAPH 31.3. CONTAINERS

typedef boost::compressed_sparse_row_graph<boost::bidirectionalS> graph;
graph g{boost::edges_are_unsorted_multi_pass, edges.begin(),

edges.end(), 4};
}

boost::compressed_sparse_row_graph is used in the same way as boost::adjacency_list and boost:
:adjacency_matrix (see Example 31.16). The most important difference is that graphs can’t be changed with
boost::compressed_sparse_row_graph. Once the graph has been created, points and lines can’t be added
or removed. Thus, boost::compressed_sparse_row_graph makes only sense when using an immutable
graph.
boost::compressed_sparse_row_graph only supports directed lines. You can’t instantiate boost::compr
essed_sparse_row_graph with the template parameter boost::undirectedS.
The main advantage of boost::compressed_sparse_row_graph is low memory consumption. boost::
compressed_sparse_row_graph is especially useful if you have a huge graph and you need to keep memory
consumption low.

129

Part VI

Communication

130

The following libraries facilitate communication with other programs.

• Boot.Asio is for communicating over networks. Boost.Asio does not just support network operations. Asio
stands for asynchronous input/output. You can use this library to process data asynchronously, for exam-
ple, when your program communicates with devices, such as network cards, that can handle tasks concur-
rently with code executed in your program.

• Boost.Interprocess is for communicating through shared memory.

131

Chapter 32

Boost.Asio

This chapter introduces the library Boost.Asio. Asio stands for asynchronous input/output. This library makes it
possible to process data asynchronously. Asynchronous means that when operations are initiated, the initiating
program does not need to wait for the operation to end. Instead, Boost.Asio notifies a program when an operation
has ended. The advantage is that other operations can be executed concurrently.
Boost.Thread is another library that makes it possible to execute operations concurrently. The difference be-
tween Boost.Thread and Boost.Asio is that with Boost.Thread, you access resources inside of a program, and
with Boost.Asio, you access resources outside of a program. For example, if you develop a function which needs
to run a time-consuming calculation, you can call this function in a thread and make it execute on another CPU
core. Threads allow you to access and use CPU cores. From the point of view of your program, CPU cores are an
internal resource. If you want to access external resources, you use Boost.Asio.
Network connections are an example of external resources. If data has to be sent or received, a network card
is told to execute the operation. For a send operation, the network card gets a pointer to a buffer with the data
to send. For a receive operation the network card gets a pointer to a buffer it should fill with the data being re-
ceived. Since the network card is an external resource for your program, it can execute the operations indepen-
dently. It only needs time – time you could use in your program to execute other operations. Boost.Asio allows
you to use the available devices more efficiently by benefiting from their ability to execute operations concur-
rently.
Sending and receiving data over a network is implemented as an asynchronous operation in Boost.Asio. Think
of an asynchronous operation as a function that immediately returns, but without any result. The result is handed
over later.
In the first step, an asynchronous operation is started. In the second step, a program is notified when the asyn-
chronous operation has ended. This separation between starting and ending makes it possible to access external
resources without having to call blocking functions.

32.1 I/O Services and I/O Objects
Programs that use Boost.Asio for asynchronous data processing are based on I/O services and I/O objects. I/O
services abstract the operating system interfaces that process data asynchronously. I/O objects initiate asyn-
chronous operations. These two concepts are required to separate tasks cleanly: I/O services look towards the
operating system API, and I/O objects look towards tasks developers need to do.
As a user of Boost.Asio you normally don’t connect with I/O services directly. I/O services are managed by an
I/O service object. An I/O service object is like a registry where I/O services are listed. Every I/O object knows
its I/O service and gets access to its I/O service through the I/O service object.
Boost.Asio defines boost::asio::io_service, a single class for an I/O service object. Every program based
on Boost.Asio uses an object of type boost::asio::io_service. This can also be a global variable.
While there is only one class for an I/O service object, several classes for I/O objects exist. Because I/O objects
are task oriented, the class that needs to be instantiated depends on the task. For example, if data has to be sent or
received over a TCP/IP connection, an I/O object of type boost::asio::ip::tcp::socket can be used. If
data has to be transmitted asynchronously over a serial port, boost::asio::serial_port can be instantiated.
If you want to wait for a time period to expire, you can use the I/O object boost::asio::steady_timer.
boost::asio::steady_timer is like an alarm clock. Instead of waiting for a blocking function to return
when the alarm clock rings, your program will be notified. Because boost::asio::steady_timer just waits

132

http://www.boost.org/libs/asio

CHAPTER 32. BOOST.ASIO 32.1. I/O SERVICES AND I/O OBJECTS

for a time period to expire, it would seem as though no external resource is accessed. However, in this case the
external resource is the capability of the operating system to notify a program when a time period expires. This
frees a program from creating a new thread just to call a blocking function. Since boost::asio::steady_ti
mer is a very simple I/O object, it will be used to introduce Boost.Asio.

Note

Because of a bug in Boost.Asio, it is not possible to compile some of the following ex-
amples with Clang. The bug has been reported in ticket 8835. As a workaround, if you
replace the types from std::chrono with the respective types from boost::chrono, you
can compile the examples with Clang.

Example 32.1 creates an I/O service object, ioservice, and uses it to initialize the I/O object timer. Like
boost::asio::steady_timer, all I/O objects expect an I/O service object as a first parameter in their con-
structor. Since timer represents an alarm clock, a second parameter can be passed to the constructor of boost:
:asio::steady_timer that defines the specific time or time period when the alarm clock should ring. In Ex-
ample 32.1, the alarm clock is set to ring after 3 seconds. The time starts with the definition of timer.
Example 32.1 Using boost::asio::steady_timer

#include <boost/asio/io_service.hpp>
#include <boost/asio/steady_timer.hpp>
#include <chrono>
#include <iostream>

using namespace boost::asio;

int main()
{

io_service ioservice;

steady_timer timer{ioservice, std::chrono::seconds{3}};
timer.async_wait([](const boost::system::error_code &ec)

{ std::cout << "3 sec\n"; });

ioservice.run();
}

Instead of calling a blocking function that will return when the alarm clock rings, Boost.Asio lets you start an
asynchronous operation. To do this, call the member function async_wait(), which expects a handler as the
sole parameter. A handler is a function or function object that is called when the asynchronous operation ends. In
Example 32.1, a lambda function is passed as a handler.
async_wait() returns immediately. Instead of waiting three seconds until the alarm clock rings, the lambda
function is called after three seconds. When async_wait() returns, a program can do something else.
A member function like async_wait() is called non-blocking. I/O objects usually also provide blocking mem-
ber functions as alternatives. For example, you can call the blocking member function wait() on boost::
asio::steady_timer. Because this member function is blocking, no handler is passed. wait() returns at a
specific time or after a time period.
The last statement in main() in Example 32.1 is a call to run() on the I/O service object. This call is required
because operating system-specific functions have to take over control. Remember that it is the I/O service in the
I/O service object which implements asynchronous operations based on operating system-specific functions.
While async_wait() initiates an asynchronous operation and returns immediately, run() blocks. Many oper-
ating systems support asynchronous operations only through a blocking function. The following example shows
why this usually isn’t a problem.
Example 32.2 Two asynchronous operations with boost::asio::steady_timer

#include <boost/asio/io_service.hpp>
#include <boost/asio/steady_timer.hpp>
#include <chrono>
#include <iostream>

133

https://svn.boost.org/trac/boost/ticket/8835

CHAPTER 32. BOOST.ASIO 32.2. SCALABILITY AND MULTITHREADING

using namespace boost::asio;

int main()
{

io_service ioservice;

steady_timer timer1{ioservice, std::chrono::seconds{3}};
timer1.async_wait([](const boost::system::error_code &ec)

{ std::cout << "3 sec\n"; });

steady_timer timer2{ioservice, std::chrono::seconds{4}};
timer2.async_wait([](const boost::system::error_code &ec)

{ std::cout << "4 sec\n"; });

ioservice.run();
}

In Example 32.2, two objects of type boost::asio::steady_timer are used. The first I/O object is an alarm
clock that rings after three seconds. The other is an alarm clock ringing after four seconds. After both time peri-
ods expire, the lambda functions that were passed to async_wait() will be called.
run() is called on the only I/O service object in this example. This call passes control to the operating system
functions that execute asynchronous operations. With their help, the first lambda function is called after three
seconds and the second lambda function after four seconds.
It might come as a surprise that asynchronous operations require a call to a blocking function. However, this is
not a problem because the program has to be prevented from exiting. If run() wouldn’t block, main() would
return, and the program would exit. If you don’t want to wait for run() to return, you only need to call run() in
a new thread.
The reason why the examples above exit after a while is that run() returns if there are no pending asynchronous
operations. Once all alarm clocks have rung, no asynchronous operations exist that the program needs to wait for.

32.2 Scalability and Multithreading
Developing a program based on a library like Boost.Asio differs from the usual C++ style. Functions that may
take longer to return are no longer called in a sequential manner. Instead of calling blocking functions, Boost.Asio
starts asynchronous operations. Functions which should be called after an operation has finished are now called
within the corresponding handler. The drawback of this approach is the physical separation of sequentially exe-
cuted functions, which can make code more difficult to understand.
A library such as Boost.Asio is typically used to achieve greater efficiency. With no need to wait for an operation
to finish, a program can perform other tasks in between. Therefore, it is possible to start several asynchronous
operations that are all executed concurrently – remember that asynchronous operations are usually used to access
resources outside of a process. Since these resources can be different devices, they can work independently and
execute operations concurrently.
Scalability describes the ability of a program to effectively benefit from additional resources. With Boost.Asio it
is possible to benefit from the ability of external devices to execute operations concurrently. If threads are used,
several functions can be executed concurrently on available CPU cores. Boost.Asio with threads improves the
scalability because your program can take advantage of internal and external devices that can execute operations
independently or in cooperation with each other.
If the member function run() is called on an object of type boost::asio::io_service, the associated han-
dlers are invoked within the same thread. By using multiple threads, a program can call run() multiple times.
Once an asynchronous operation is complete, the I/O service object will execute the handler in one of these threads.
If a second operation is completed shortly after the first one, the I/O service object can execute the handler in a
different thread. Now, not only can operations outside of a process be executed concurrently, but handlers within
the process can be executed concurrently, too.
Example 32.3 Two threads for the I/O service object to execute handlers concurrently

#include <boost/asio/io_service.hpp>
#include <boost/asio/steady_timer.hpp>
#include <chrono>
#include <thread>

134

CHAPTER 32. BOOST.ASIO 32.2. SCALABILITY AND MULTITHREADING

#include <iostream>

using namespace boost::asio;

int main()
{

io_service ioservice;

steady_timer timer1{ioservice, std::chrono::seconds{3}};
timer1.async_wait([](const boost::system::error_code &ec)

{ std::cout << "3 sec\n"; });

steady_timer timer2{ioservice, std::chrono::seconds{3}};
timer2.async_wait([](const boost::system::error_code &ec)

{ std::cout << "3 sec\n"; });

std::thread thread1{[&ioservice](){ ioservice.run(); }};
std::thread thread2{[&ioservice](){ ioservice.run(); }};
thread1.join();
thread2.join();

}

The previous example has been converted to a multithreaded program in Example 32.3. With std::thread,
two threads are created in main(). run() is called on the only I/O service object in each thread. This makes it
possible for the I/O service object to use both threads to execute handlers when asynchronous operations com-
plete.
In Example 32.3, both alarm clocks should ring after three seconds. Because two threads are available, both
lambda functions can be executed concurrently. If the second alarm clock rings while the handler of the first
alarm clock is being executed, the handler can be executed in the second thread. If the handler of the first alarm
clock has already returned, the I/O service object can use any thread to execute the second handler.
Of course, it doesn’t always make sense to use threads. Example 32.3 might not write the messages sequentially
to the standard output stream. Instead, they might be mixed up. Both handlers, which may run in two threads
concurrently, share the global resource std::cout. To avoid interruptions, access to std::cout would need to
be synchronized. The advantage of threads is lost if handlers can’t be executed concurrently.
Example 32.4 One thread for each of two I/O service objects to execute handlers concurrently

#include <boost/asio/io_service.hpp>
#include <boost/asio/steady_timer.hpp>
#include <chrono>
#include <thread>
#include <iostream>

using namespace boost::asio;

int main()
{

io_service ioservice1;
io_service ioservice2;

steady_timer timer1{ioservice1, std::chrono::seconds{3}};
timer1.async_wait([](const boost::system::error_code &ec)

{ std::cout << "3 sec\n"; });

steady_timer timer2{ioservice2, std::chrono::seconds{3}};
timer2.async_wait([](const boost::system::error_code &ec)

{ std::cout << "3 sec\n"; });

std::thread thread1{[&ioservice1](){ ioservice1.run(); }};
std::thread thread2{[&ioservice2](){ ioservice2.run(); }};
thread1.join();
thread2.join();

}

135

CHAPTER 32. BOOST.ASIO 32.3. NETWORK PROGRAMMING

Calling run() repeatedly on a single I/O service object is the recommended method to make a program based
on Boost.Asio more scalable. However, instead of providing several threads to one I/O service object, you could
also create multiple I/O service objects.
Two I/O service objects are used next to two alarm clocks of type boost::asio::steady_timer in Exam-
ple 32.4. The program is based on two threads, with each thread bound to another I/O service object. The two
I/O objects timer1 and timer2 aren’t bound to the same I/O service object anymore. They are bound to differ-
ent objects.
Example 32.4 works the same as before. It’s not possible to give general advice about when it makes sense to
use more than one I/O service object. Because boost::asio::io_service represents an operating system
interface, any decision depends on the particular interface.
On Windows, boost::asio::io_service is usually based on IOCP, on Linux, it is based on epoll(). Hav-
ing several I/O service objects means that several I/O completion ports will be used or epoll() will be called
multiple times. Whether this is better than using just one I/O completion port or one call to epoll() depends on
the individual case.

32.3 Network programming
Even though Boost.Asio can process any kind of data asynchronously, it is mainly used for network program-
ming. This is because Boost.Asio supported network functions long before additional I/O objects were added.
Network functions are a perfect use for asynchronous operations because the transmission of data over a network
may take a long time, which means acknowledgments and errors may not be available as fast as the functions that
send or receive data can execute.
Boost.Asio provides many I/O objects to develop network programs. Example 32.5 uses the class boost::
asio::ip::tcp::socket to establish a connection with another computer. This example sends a HTTP re-
quest to a web server to download the homepage.
Example 32.5 uses three handlers: connect_handler() and read_handler() are called when the connection
is established and data is received. resolve_handler() is used for name resolution.
Because data can only be received after a connection has been established, and because a connection can only
be established after the name has been resolved, the various asynchronous operations are started in handlers. In
resolve_handler(), the iterator it, which points to an endpoint resolved from the name, is used with tcp_
socket to establish a connection. In connect_handler(), tcp_socket is accessed to send a HTTP request
and start receiving data. Since all operations are asynchronous, handlers are passed to the respective functions.
Depending on the operations, additional parameters may need to be passed. For example, the iterator it refers to
an endpoint resolved from a name. The array bytes is used to store data received.
In main(), boost::asio::ip::tcp::resolver::query is instantiated to create an object q. q represents
a query for the name resolver, an I/O object of type boost::asio::ip::tcp::resolver. By passing q to
async_resolve(), an asynchronous operation is started to resolve the name. Example 32.5 resolves the name
theboostcpplibraries.com. After the asynchronous operation has been started, run() is called on the I/O
service object to pass control to the operating system.
Example 32.5 A web client with boost::asio::ip::tcp::socket

#include <boost/asio/io_service.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <array>
#include <string>
#include <iostream>

using namespace boost::asio;
using namespace boost::asio::ip;

io_service ioservice;
tcp::resolver resolv{ioservice};
tcp::socket tcp_socket{ioservice};
std::array<char, 4096> bytes;

void read_handler(const boost::system::error_code &ec,
std::size_t bytes_transferred)

{

136

CHAPTER 32. BOOST.ASIO 32.3. NETWORK PROGRAMMING

if (!ec)
{

std::cout.write(bytes.data(), bytes_transferred);
tcp_socket.async_read_some(buffer(bytes), read_handler);

}
}

void connect_handler(const boost::system::error_code &ec)
{

if (!ec)
{

std::string r =
"GET / HTTP/1.1\r\nHost: theboostcpplibraries.com\r\n\r\n";

write(tcp_socket, buffer(r));
tcp_socket.async_read_some(buffer(bytes), read_handler);

}
}

void resolve_handler(const boost::system::error_code &ec,
tcp::resolver::iterator it)

{
if (!ec)

tcp_socket.async_connect(*it, connect_handler);
}

int main()
{

tcp::resolver::query q{"theboostcpplibraries.com", "80"};
resolv.async_resolve(q, resolve_handler);
ioservice.run();

}

When the name has been resolved, resolve_handler() is called. The handler first checks whether the name
resolution has been successful. In this case ec is 0. Only then is the socket accessed to establish a connection.
The address of the server to connect to is provided by the second parameter, which is of type boost::asio::
ip::tcp::resolver::iterator. This parameter is the result of the name resolution.
The call to async_connect() is followed by a call to the handler connect_handler(). Again ec is checked
first to find out whether a connection could be established. If so, async_read_some() is called on the socket.
With this call, reading data begins. Data being received is stored in the array bytes, which is passed as a first
parameter to async_read_some().
read_handler() is called when one or more bytes have been received and copied to bytes. The parameter
bytes_transferred of type std::size_t contains the number of bytes that have been received. As usual, the
handler should check first ec whether the asynchronous operation was completed successfully. Only if this is the
case is data written to standard output.
Please note that read_handler() calls async_read_some() again after data has been written to std::cout.
This is required because you can’t be sure that the entire homepage was downloaded and copied into bytes in
a single asynchronous operation. The repeated calls to async_read_some() followed by the repeated calls to
read_handler() only end when the connection is closed, which happens when the web server has sent the en-
tire homepage. Then read_handler() reports an error in ec. At this point, no further data is written to std::
cout and async_read() is not called on the socket. Because there are no pending asynchronous operations, the
program exits.
Example 32.6 is a time server. You can connect with a telnet client to get the current time. Afterwards the time
server shuts down.
The time server uses the I/O object boost::asio::ip::tcp::acceptor to accept an incoming connection
from another program. You must initialize the object so it knows which protocol to use on which port. In the
example, the variable tcp_endpoint of type boost::asio::ip::tcp::endpoint is used to tell tcp_accep
tor to accept incoming connections of version 4 of the internet protocol on port 2014.
After the acceptor has been initialized, listen() is called to make the acceptor start listening. Then async_ac
cept() is called to accept the first connection attempt. A socket has to be passed as a first parameter to async_
accept(), which will be used to send and receive data on a new connection.
Once another program establishes a connection, accept_handler() is called. If the connection was established

137

CHAPTER 32. BOOST.ASIO 32.4. COROUTINES

successfully, the current time is sent with boost::asio::async_write(). This function writes all data in
data to the socket. boost::asio::ip::tcp::socket also provides the member function async_write
_some(). This function calls the handler when at least one byte has been sent. Then the handler must check
how many bytes were sent and how many still have to be sent. Then, once again, it has to call async_write
_some(). Repeatedly calculating the number of bytes left to send and calling async_write_some() can be
avoided by using boost::asio::async_write(). The asynchronous operation that started with this function
is only complete when all bytes in data have been sent.
Example 32.6 A time server with boost::asio::ip::tcp::acceptor

#include <boost/asio/io_service.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <string>
#include <ctime>

using namespace boost::asio;
using namespace boost::asio::ip;

io_service ioservice;
tcp::endpoint tcp_endpoint{tcp::v4(), 2014};
tcp::acceptor tcp_acceptor{ioservice, tcp_endpoint};
tcp::socket tcp_socket{ioservice};
std::string data;

void write_handler(const boost::system::error_code &ec,
std::size_t bytes_transferred)

{
if (!ec)

tcp_socket.shutdown(tcp::socket::shutdown_send);
}

void accept_handler(const boost::system::error_code &ec)
{

if (!ec)
{

std::time_t now = std::time(nullptr);
data = std::ctime(&now);
async_write(tcp_socket, buffer(data), write_handler);

}
}

int main()
{

tcp_acceptor.listen();
tcp_acceptor.async_accept(tcp_socket, accept_handler);
ioservice.run();

}

After the data has been sent, write_handler() is called. This function calls shutdown() with the parameter
boost::asio::ip::tcp::socket::shutdown_send, which says the program is done sending data through
the socket. Since there are no pending asynchronous operations, Example 32.6 exits. Please note that although
data is only used in accept_handler(), it can’t be a local variable. data is passed by reference through
boost::asio::buffer() to boost::asio::async_write(). When boost::asio::async_write()
and accept_handler() return, the asynchronous operation has started, but has not completed. data must exist
until the asynchronous operation has completed. If data is a global variable, this is guaranteed.

32.4 Coroutines
Since version 1.54.0, Boost.Asio supports coroutines. While you could use Boost.Coroutine directly, explicit
support of coroutines in Boost.Asio makes it easier to use them.

138

CHAPTER 32. BOOST.ASIO 32.4. COROUTINES

Example 32.7 Coroutines with Boost.Asio

#include <boost/asio/io_service.hpp>
#include <boost/asio/spawn.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/buffer.hpp>
#include <boost/asio/ip/tcp.hpp>
#include <list>
#include <string>
#include <ctime>

using namespace boost::asio;
using namespace boost::asio::ip;

io_service ioservice;
tcp::endpoint tcp_endpoint{tcp::v4(), 2014};
tcp::acceptor tcp_acceptor{ioservice, tcp_endpoint};
std::list<tcp::socket> tcp_sockets;

void do_write(tcp::socket &tcp_socket, yield_context yield)
{

std::time_t now = std::time(nullptr);
std::string data = std::ctime(&now);
async_write(tcp_socket, buffer(data), yield);
tcp_socket.shutdown(tcp::socket::shutdown_send);

}

void do_accept(yield_context yield)
{

for (int i = 0; i < 2; ++i)
{

tcp_sockets.emplace_back(ioservice);
tcp_acceptor.async_accept(tcp_sockets.back(), yield);
spawn(ioservice, [](yield_context yield)

{ do_write(tcp_sockets.back(), yield); });
}

}

int main()
{

tcp_acceptor.listen();
spawn(ioservice, do_accept);
ioservice.run();

}

Coroutines let you create a structure that mirrors the actual program logic. Asynchronous operations don’t split
functions, because there are no handlers to define what should happen when an asynchronous operation com-
pletes. Instead of having handlers call each other, the program can use a sequential structure.
The function to call to use coroutines with Boost.Asio is boost::asio::spawn(). The first parameter passed
must be an I/O service object. The second parameter is the function that will be the coroutine. This function must
accept as its only parameter an object of type boost::asio::yield_context. It must have no return value.
Example 32.7 uses do_accept() and do_write() as coroutines. If the function signature is different, as is the
case for do_write(), you must use an adapter like std::bind or a lambda function.
Instead of a handler, you can pass an object of type boost::asio::yield_context to asynchronous func-
tions. do_accept() passes the parameter yield to async_accept(). In do_write(), yield is passed to
async_write(). These function calls still start asynchronous operations, but no handlers will be called when
the operations complete. Instead, the context in which the asynchronous operations were started is restored.
When these asynchronous operations complete, the program continues where it left off.
do_accept() contains a for loop. A new socket is passed to async_accept() every time the function is
called. Once a client establishes a connection, do_write() is called as a coroutine with boost::asio::spawn()
to send the current time to the client.
The for loop makes it easy to see that the program can serve two clients before it exits. Because the example is

139

CHAPTER 32. BOOST.ASIO 32.5. PLATFORM-SPECIFIC I/O OBJECTS

based on coroutines, the repeated execution of an asynchronous operation can be implemented in a for loop.
This improves the readability of the program since you don’t have to trace potential calls to handlers to find
out when the last asynchronous operation will be completed. If the time server needs to support more than two
clients, only the for loop has to be adapted.

32.5 Platform-specific I/O Objects
So far, all of the examples in this chapter have been platform independent. I/O objects such as boost::asio::
steady_timer and boost::asio::ip::tcp::socket are supported on all platforms. However, Boost.Asio
also provides platform-specific I/O objects because some asynchronous operations are only available on certain
platforms, for example, Windows or Linux.
Example 32.8 uses the I/O object boost::asio::windows::object_handle, which is only available on
Windows. boost::asio::windows::object_handle, which is based on the Windows function Registe
rWaitForSingleObject(), lets you start asynchronous operations for object handles. All handles accepted by
RegisterWaitForSingleObject() can be used with boost::asio::windows::object_handle. With
async_wait(), it is possible to wait asynchronously for an object handle to change.
Example 32.8 Using boost::asio::windows::object_handle

#include <boost/asio/io_service.hpp>
#include <boost/asio/windows/object_handle.hpp>
#include <boost/system/error_code.hpp>
#include <iostream>
#include <Windows.h>

using namespace boost::asio;
using namespace boost::system;

int main()
{

io_service ioservice;

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED, NULL);

char buffer[1024];
DWORD transferred;
OVERLAPPED overlapped;
ZeroMemory(&overlapped, sizeof(overlapped));
overlapped.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer), FALSE,

FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, &overlapped, NULL);

windows::object_handle obj_handle{ioservice, overlapped.hEvent};
obj_handle.async_wait([&buffer, &overlapped](const error_code &ec) {

if (!ec)
{

DWORD transferred;
GetOverlappedResult(overlapped.hEvent, &overlapped, &transferred,

FALSE);
auto notification = reinterpret_cast<FILE_NOTIFY_INFORMATION*>(buffer);
std::wcout << notification->Action << '\n';
std::streamsize size = notification->FileNameLength / sizeof(wchar_t);
std::wcout.write(notification->FileName, size);

}
});

ioservice.run();
}

Example 32.8 initializes the object obj_handle of type boost::asio::windows::object_handle with

140

CHAPTER 32. BOOST.ASIO 32.5. PLATFORM-SPECIFIC I/O OBJECTS

an object handle created with the Windows function CreateEvent(). The handle is part of an OVERLAPPED
structure whose address is passed to the Windows function ReadDirectoryChangesW(). Windows uses OVERL
APPED structures to start asynchronous operations.
ReadDirectoryChangesW() can be used to monitor a directory and wait for changes. To call the function
asynchronously, an OVERLAPPED structure must be passed to ReadDirectoryChangesW(). To report the com-
pletion of the asynchronous operation through Boost.Asio, an event handler is stored in the OVERLAPPED struc-
ture before it is passed to ReadDirectoryChangesW(). This event handler is passed to obj_handle after-
wards. When async_wait() is called on obj_handle, the handler is executed when a change is detected in the
observed directory.
When you run Example 32.8, create a new file in the directory from which you will run the example. The pro-
gram will detect the new file and write a message to the standard output stream.
Example 32.9 uses ReadDirectoryChangesW() like the previous one to monitor a directory. This time, the
asynchronous call to ReadDirectoryChangesW() isn’t linked to an event handle. The example uses the class
boost::asio::windows::overlapped_ptr, which uses an OVERLAPPED structure internally. get() re-
trieves a pointer to the internal OVERLAPPED structure. In the example, the pointer is then passed to ReadDirect
oryChangesW().
boost::asio::windows::overlapped_ptr is an I/O object that has no member function to start an asyn-
chronous operation. The asynchronous operation is started by passing a pointer to the internal OVERLAPPED vari-
able to a Windows function. In addition to an I/O service object, the constructor of boost::asio::windows::
overlapped_ptr expects a handler that will be called when the asynchronous operation completes.
Example 32.9 uses boost::asio::use_service() to get a reference to a service in the I/O service object
ioservice. boost::asio::use_service() is a function template. The type of the I/O service you want
to fetch has to be passed as a template parameter. In the example, boost::asio::detail::io_service_impl is passed.
This type of the I/O service is closest to the operating system. On Windows, boost::asio::detail::io_service_impl
uses IOCP, and on Linux it uses epoll(). boost::asio::detail::io_service_impl is a type definition that is set to
boost::asio::detail::win_iocp_io_service on Windows and to boost::asio::detail::task_io
_service on Linux.
boost::asio::detail::win_iocp_io_service provides the member function register_handle() to
link a handle to an IOCP handle. register_handle() calls the Windows function CreateIoCompletionP
ort(). This call is required for the example to work correctly. The handle returned by CreateFileA() may be
passed through overlapped to ReadDirectoryChangesW() only after it is linked to an IOCP handle.
Example 32.9 checks whether ReadDirectoryChangesW() has failed. If ReadDirectoryChangesW() failed,
complete() is called on overlapped to complete the asynchronous operation for Boost.Asio. The parameters
passed to complete() are forwarded to the handler.
If ReadDirectoryChangesW() succeeds, release() is called. The asynchronous operation is then pending
and is only completed after the operation which was initiated with the Windows function ReadDirectoryChang
esW() has completed.
Example 32.9 Using boost::asio::windows::overlapped_ptr

#include <boost/asio/io_service.hpp>
#include <boost/asio/windows/overlapped_ptr.hpp>
#include <boost/system/error_code.hpp>
#include <iostream>
#include <Windows.h>

using namespace boost::asio;
using namespace boost::system;

int main()
{

io_service ioservice;

HANDLE file_handle = CreateFileA(".", FILE_LIST_DIRECTORY,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL,
OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_FLAG_OVERLAPPED, NULL);

error_code ec;
auto &io_service_impl = use_service<detail::io_service_impl>(ioservice);
io_service_impl.register_handle(file_handle, ec);

char buffer[1024];

141

CHAPTER 32. BOOST.ASIO 32.5. PLATFORM-SPECIFIC I/O OBJECTS

auto handler = [&buffer](const error_code &ec, std::size_t) {
if (!ec)
{

auto notification =
reinterpret_cast<FILE_NOTIFY_INFORMATION*>(buffer);

std::wcout << notification->Action << '\n';
std::streamsize size = notification->FileNameLength / sizeof(wchar_t);
std::wcout.write(notification->FileName, size);

}
};
windows::overlapped_ptr overlapped{ioservice, handler};
DWORD transferred;
BOOL ok = ReadDirectoryChangesW(file_handle, buffer, sizeof(buffer),

FALSE, FILE_NOTIFY_CHANGE_FILE_NAME, &transferred, overlapped.get(),
NULL);

int last_error = GetLastError();
if (!ok && last_error != ERROR_IO_PENDING)
{

error_code ec{last_error, error::get_system_category()};
overlapped.complete(ec, 0);

}
else
{

overlapped.release();
}

ioservice.run();
}

Example 32.10 Using boost::asio::posix::stream_descriptor

#include <boost/asio/io_service.hpp>
#include <boost/asio/posix/stream_descriptor.hpp>
#include <boost/asio/write.hpp>
#include <boost/system/error_code.hpp>
#include <iostream>
#include <unistd.h>

using namespace boost::asio;

int main()
{

io_service ioservice;

posix::stream_descriptor stream{ioservice, STDOUT_FILENO};
auto handler = [](const boost::system::error_code&, std::size_t) {

std::cout << ", world!\n";
};
async_write(stream, buffer("Hello"), handler);

ioservice.run();
}

Example 32.10 introduces an I/O object for POSIX platforms.
boost::asio::posix::stream_descriptor can be initialized with a file descriptor to start an asynchronous
operation on that file descriptor. In the example, stream is linked to the file descriptor STDOUT_FILENO to write
a string asynchronously to the standard output stream.

142

Chapter 33

Boost.Interprocess

Interprocess communication describes mechanisms to exchange data between programs running on the same
computer. It does not include network communication. To exchange data between programs running on differ-
ent computers connected through a network, see Chapter 32, which covers Boost.Asio.
This chapter presents the library Boost.Interprocess, which contains numerous classes that abstract operating sys-
tem specific interfaces for interprocess communication. Even though the concepts of interprocess communica-
tion are similar between different operating systems, the interfaces can vary greatly. Boost.Interprocess provides
platform-independent access.
While Boost.Asio can be used to exchange data between processes running on the same computer, Boost.Interprocess
usually provides better performance. Boost.Interprocess calls operating system functions optimized for data ex-
change between processes running on the same computer and thus should be the first choice to exchange data
without a network.

33.1 Shared Memory
Shared memory is typically the fastest form of interprocess communication. It provides a memory area that is
shared between processes. One process can write data to the area and another process can read it.
In Boost.Interprocess the class boost::interprocess::shared_memory_object is used to represent shared
memory. Include the header file boost/interprocess/shared_memory_object.hpp to use this
class.
Example 33.1 Creating shared memory

#include <boost/interprocess/shared_memory_object.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

shared_memory_object shdmem{open_or_create, "Boost", read_write};
shdmem.truncate(1024);
std::cout << shdmem.get_name() << '\n';
offset_t size;
if (shdmem.get_size(size))

std::cout << size << '\n';
}

The constructor of boost::interprocess::shared_memory_object expects three parameters. The first pa-
rameter specifies whether the shared memory should be created or just opened. Example 33.1 handles both cases.
boost::interprocess::open_or_create will open shared memory if it already exists or create shared
memory if it doesn’t.
Opening existing shared memory assumes that it has been created before. To uniquely identify shared memory, a
name is assigned. That name is specified by the second parameter passed to the constructor of boost::interpr
ocess::shared_memory_object.

143

http://www.boost.org/libs/interprocess

CHAPTER 33. BOOST.INTERPROCESS 33.1. SHARED MEMORY

The third parameter determines how a process can access shared memory. In Example 33.1, boost::interpro
cess::read_write says the process has read-write access.
After creating an object of type boost::interprocess::shared_memory_object, a corresponding shared
memory block will exist within the operating system. The size of this memory area is initially 0. To use the area,
call truncate(), passing in the size of the shared memory in bytes. In Example 33.1, the shared memory pro-
vides space for 1,024 bytes. truncate() can only be called if the shared memory has been opened with boost:
:interprocess::read_write. If not, an exception of type boost::interprocess::interprocess_exc
eption is thrown. truncate() can be called repeatedly to adjust the size of the shared memory.
After creating shared memory, member functions such as get_name() and get_size() can be used to query
the name and the size of the shared memory.
Because shared memory is used to exchange data between different processes, each process needs to map the
shared memory into its address space. The class boost::interprocess::mapped_region is used to do this.
It may come as a surprise that two classes (boost::interprocess::shared_memory_object and boost::
interprocess::mapped_region) are needed to access shared memory. This is done so that the class boost:
:interprocess::mapped_region can also be used to map other objects into the address space of a process.
Example 33.2 Mapping shared memory into the address space of a process

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

shared_memory_object shdmem{open_or_create, "Boost", read_write};
shdmem.truncate(1024);
mapped_region region{shdmem, read_write};
std::cout << std::hex << region.get_address() << '\n';
std::cout << std::dec << region.get_size() << '\n';
mapped_region region2{shdmem, read_only};
std::cout << std::hex << region2.get_address() << '\n';
std::cout << std::dec << region2.get_size() << '\n';

}

To use the class boost::interprocess::mapped_region, include the header file boost/interprocess/
mapped_region.hpp. An object of type boost::interprocess::shared_memory_object must be
passed as the first parameter to the constructor of boost::interprocess::mapped_region. The second pa-
rameter determines whether access to the memory area is read-only or read-write.
Example 33.2 creates two objects of type boost::interprocess::mapped_region. The shared memory
named Boost is mapped twice into the address space of the process. The address and the size of the mapped
memory area is written to standard output using the member functions get_address() and get_size(). get_
size() returns 1024 in both cases, but the return value of get_address() is different for each object.

Note

Example 33.2, and some of the examples that follow, will cause a compiler error with Vi-
sual C++ 2013 and Boost 1.55.0. The bug is described in ticket 9332. This bug has been
fixed in Boost 1.56.0.

Example 33.3 Writing and reading a number in shared memory

#include <boost/interprocess/shared_memory_object.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

144

https://svn.boost.org/trac/boost/ticket/9332

CHAPTER 33. BOOST.INTERPROCESS 33.1. SHARED MEMORY

shared_memory_object shdmem{open_or_create, "Boost", read_write};
shdmem.truncate(1024);
mapped_region region{shdmem, read_write};
int *i1 = static_cast<int*>(region.get_address());
*i1 = 99;
mapped_region region2{shdmem, read_only};
int *i2 = static_cast<int*>(region2.get_address());
std::cout << *i2 << '\n';

}

Example 33.3 uses the mapped memory area to write and read a number. region writes the number 99 to the
beginning of the shared memory. region2 then reads the same location in shared memory and writes the number
to the standard output stream. Even though region and region2 represent different memory areas within the
process, as seen by the return values of get_address() in the previous example, the program prints 99 because
both memory areas access the same underlying shared memory.
Example 33.4 Deleting shared memory

#include <boost/interprocess/shared_memory_object.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

bool removed = shared_memory_object::remove("Boost");
std::cout << std::boolalpha << removed << '\n';

}

To delete shared memory, boost::interprocess::shared_memory_object offers the static member func-
tion remove(), which takes the name of the shared memory to be deleted as a parameter (see Example 33.4).
Boost.Interprocess partially supports the RAII idiom through a class called boost::interprocess::remove
_shared_memory_on_destroy. Its constructor expects the name of an existing shared memory. If an object of
this class is destroyed, the shared memory is automatically deleted in the destructor.
The constructor of boost::interprocess::remove_shared_memory_on_destroy does not create or open
the shared memory. Therefore, this class is not a typical representative of the RAII idiom.
If remove() is never called, the shared memory continues to exist even if the program terminates. Whether or
not the shared memory is automatically deleted depends on the underlying operating system. Windows and many
Unix operating systems, including Linux, automatically delete shared memory once the system is restarted.
Windows provides a special kind of shared memory that is automatically deleted once the last process using it
has been terminated. Access the class boost::interprocess::windows_shared_memory, which is defined
in boost/interprocess/windows_shared_memory.hpp, to use this kind of shared memory (see Ex-
ample 33.5).
Example 33.5 Using Windows-specific shared memory

#include <boost/interprocess/windows_shared_memory.hpp>
#include <boost/interprocess/mapped_region.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

windows_shared_memory shdmem{open_or_create, "Boost", read_write, 1024};
mapped_region region{shdmem, read_write};
int *i1 = static_cast<int*>(region.get_address());
*i1 = 99;
mapped_region region2{shdmem, read_only};
int *i2 = static_cast<int*>(region2.get_address());
std::cout << *i2 << '\n';

}

145

CHAPTER 33. BOOST.INTERPROCESS 33.2. MANAGED SHARED MEMORY

boost::interprocess::windows_shared_memory does not provide a member function truncate(). In-
stead, the size of the shared memory needs to be passed as the fourth parameter to the constructor.
Even though the class boost::interprocess::windows_shared_memory is not portable and can only be
used on Windows, it is useful when data needs to be exchanged with an existing Windows program that uses this
special kind of shared memory.

33.2 Managed Shared Memory
The previous section introduced the class boost::interprocess::shared_memory_object, which can be
used to create and manage shared memory. In practice, this class is rarely used because it requires the program to
read and write individual bytes from and to the shared memory. C++ style favors creating objects of classes and
hiding the specifics of where and how data is stored in memory.
Boost.Interprocess provides boost::interprocess::managed_shared_memory, a class that is defined in
boost/interprocess/managed_shared_memory.hpp, to support managed shared memory. This
class lets you instantiate objects that have their memory located in shared memory, making the objects automati-
cally available to any program that accesses the same shared memory.
Example 33.6 Using managed shared memory
#include <boost/interprocess/managed_shared_memory.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

shared_memory_object::remove("Boost");
managed_shared_memory managed_shm{open_or_create, "Boost", 1024};
int *i = managed_shm.construct<int>("Integer")(99);
std::cout << *i << '\n';
std::pair<int*, std::size_t> p = managed_shm.find<int>("Integer");
if (p.first)

std::cout << *p.first << '\n';
}

Example 33.6 opens the shared memory named Boost with a size of 1,024 bytes. If the shared memory does not
exist, it will be automatically created.
In regular shared memory, individual bytes are directly accessed to read or write data. Managed shared memory
uses member functions such as construct(), which expects a type as a template parameter (in Example 33.6,
int). The member function expects a name to denote the object created in the managed shared memory. Exam-
ple 33.6 uses the name Integer.
Because construct() returns a proxy object, parameters can be passed to it to initialize the created object.
The syntax looks like a call to a constructor. This ensures that objects can be created and initialized in managed
shared memory.
To access a particular object in managed shared memory, the member function find() is used. By passing the
name of the object to find, find() returns either a pointer to the object, or in case no object with the given name
was found, 0.
As seen in Example 33.6, find() returns an object of type std::pair. The pointer to the object is provided as
the member variable first. Example 33.7 shows what is received in second.
Example 33.7 Creating arrays in managed shared memory
#include <boost/interprocess/managed_shared_memory.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

shared_memory_object::remove("Boost");
managed_shared_memory managed_shm{open_or_create, "Boost", 1024};
int *i = managed_shm.construct<int>("Integer")[10](99);
std::cout << *i << '\n';

146

CHAPTER 33. BOOST.INTERPROCESS 33.2. MANAGED SHARED MEMORY

std::pair<int*, std::size_t> p = managed_shm.find<int>("Integer");
if (p.first)
{

std::cout << *p.first << '\n';
std::cout << p.second << '\n';

}
}

In Example 33.7, an array with ten elements of type int is created by providing the value 10 enclosed by square
brackets after the call to construct(). The same 10 is written to the standard output stream using the member
variable second. Thanks to this member variable, you can tell whether objects returned by find() are single
objects or arrays. For the former, second is set to 1, while for the latter, second is set to the number of elements
in the array.
Please note that all ten elements in the array are initialized with the value 99. If you want to initialize elements
with different values, pass an iterator.
construct() will fail if an object already exists with the given name in the managed shared memory. In this
case, construct() returns 0 and no initialization occurs. To use an existing object, use the member function
find_or_construct(), which returns a pointer to an existing object or creates a new one.
There are other cases that will cause construct() to fail. Example 33.8 tries to create an array of type int with
4,096 elements. The managed shared memory, however, only contains 1,024 bytes. This causes an exception of
type boost::interprocess::bad_alloc to be thrown.
Once objects have been created in a managed shared memory, they can be deleted with the member function des
troy().
Example 33.8 An exception of type boost::interprocess::bad_alloc

#include <boost/interprocess/managed_shared_memory.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

try
{

shared_memory_object::remove("Boost");
managed_shared_memory managed_shm{open_or_create, "Boost", 1024};
int *i = managed_shm.construct<int>("Integer")[4096](99);

}
catch (boost::interprocess::bad_alloc &ex)
{

std::cerr << ex.what() << '\n';
}

}

In Example 33.9, the name of the object to be deleted is passed as the only parameter to destroy(). The return
value of type bool can be checked to verify whether the given object was found and deleted successfully. Be-
cause an object will always be deleted if found, a return value of false indicates that no object with the given
name was found.
The member function destroy_ptr() can be used to pass a pointer to an object in the managed shared mem-
ory. It can also be used to delete arrays.
Example 33.9 Removing objects in shared memory

#include <boost/interprocess/managed_shared_memory.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

shared_memory_object::remove("Boost");
managed_shared_memory managed_shm{open_or_create, "Boost", 1024};
int *i = managed_shm.find_or_construct<int>("Integer")(99);

147

CHAPTER 33. BOOST.INTERPROCESS 33.2. MANAGED SHARED MEMORY

std::cout << *i << '\n';
managed_shm.destroy<int>("Integer");
std::pair<int*, std::size_t> p = managed_shm.find<int>("Integer");
std::cout << p.first << '\n';

}

Because managed shared memory makes it fairly easy to share objects between processes, it seems natural to use
containers from the standard library as well. However, these containers allocate memory using new. In order to
use these containers in managed shared memory, they need to be told to allocate memory in the shared memory.
Many implementations of the standard library are not flexible enough to use containers such as std::string
or std::list with Boost.Interprocess. This includes the implementations shipped with Visual C++ 2013, GCC
and Clang.
To allow developers to use the containers from the standard library, Boost.Interprocess provides a more flexible
implementation in the namespace boost::interprocess. For example, boost::interprocess::string
acts exactly like its C++ counterpart std::string, except that strings can be safely stored in a managed shared
memory (see Example 33.10).
Example 33.10 Putting strings into shared memory
#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/containers/string.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

shared_memory_object::remove("Boost");
managed_shared_memory managed_shm{open_or_create, "Boost", 1024};
typedef allocator<char,

managed_shared_memory::segment_manager> CharAllocator;
typedef basic_string<char, std::char_traits<char>, CharAllocator> string;
string *s = managed_shm.find_or_construct<string>("String")("Hello!",

managed_shm.get_segment_manager());
s->insert(5, ", world");
std::cout << *s << '\n';

}

To create a string that will allocate memory in the same managed shared memory it resides in, a corresponding
type must be defined. The new string type must use an allocator provided by Boost.Interprocess instead of the
default allocator provided by the standard.
For this purpose, Boost.Interprocess provides the class boost::interprocess::allocator, which is defined
in boost/interprocess/allocators/allocator.hpp. With this class, an allocator can be created
that internally uses the segment manager of the managed shared memory. The segment manager is responsible
for managing the memory within a managed shared memory block. Using the newly created allocator, a corre-
sponding type for the string can be defined. As indicated above, use boost::interprocess::basic_string
instead of std::basic_string. The new type – called string in Example 33.10 – is based on boost::
interprocess::basic_string and accesses the segment manager via its allocator. To let the particular in-
stance of string created by a call to find_or_construct() know which segment manager it should access,
pass a pointer to the corresponding segment manager as the second parameter to the constructor.
Boost.Interprocess provides implementations for many other containers from the standard library. For example,
boost::interprocess::vector and boost::interprocess::map are defined in boost/interprocess/
containers/vector.hpp and boost/interprocess/containers/map.hpp, respectively.
Please note that the containers from Boost.Container support Boost.Interprocess and can be put into shared mem-
ory. They can be used instead of containers from boost::interprocess. Boost.Container is introduced in
Chapter 20.
Whenever the same managed shared memory is accessed from different processes, operations such as creat-
ing, finding, and destroying objects are automatically synchronized. If two programs try to create objects with
different names in the managed shared memory, the access is serialized accordingly. To execute multiple op-
erations at one time without being interrupted by operations from a different process, use the member function
atomic_func() (see Example 33.11).

148

CHAPTER 33. BOOST.INTERPROCESS 33.3. SYNCHRONIZATION

Example 33.11 Atomic access on a managed shared memory

#include <boost/interprocess/managed_shared_memory.hpp>
#include <functional>
#include <iostream>

using namespace boost::interprocess;

void construct_objects(managed_shared_memory &managed_shm)
{

managed_shm.construct<int>("Integer")(99);
managed_shm.construct<float>("Float")(3.14);

}

int main()
{

shared_memory_object::remove("Boost");
managed_shared_memory managed_shm{open_or_create, "Boost", 1024};
auto atomic_construct = std::bind(construct_objects,

std::ref(managed_shm));
managed_shm.atomic_func(atomic_construct);
std::cout << *managed_shm.find<int>("Integer").first << '\n';
std::cout << *managed_shm.find<float>("Float").first << '\n';

}

atomic_func() expects as its single parameter a function that takes no parameters and has no return value. The
passed function will be called in a fashion that ensures exclusive access to the managed shared memory. How-
ever, exclusive access is only ensured if all other processes that access the managed shared memory also use
atomic_func(). If another process has a pointer to an object within the managed shared memory, it could ac-
cess and modify this object using its pointer.
Boost.Interprocess can also be used to synchronize object access. Since Boost.Interprocess does not know who
can access individual objects at a particular time, synchronization needs to be explicitly handled. The following
section introduces the classes provided for synchronization.

33.3 Synchronization
Boost.Interprocess allows multiple processes to use shared memory concurrently. Because shared memory is, by
definition, shared between processes, Boost.Interprocess needs to support some kind of synchronization.
Thinking about synchronization, classes from the C++11 standard library or Boost.Thread come to mind. But
these classes can only be used to synchronize threads within the same process; they do not support synchro-
nization of different processes. However, since the challenge in both cases is the same, the concepts are also the
same.
While synchronization objects such as mutexes and condition variables reside in the same address space in mul-
tithreaded applications, and therefore are available to all threads, the challenge with shared memory is that inde-
pendent processes need to share these objects. For example, if one process creates a mutex, it somehow needs to
be accessible from a different process.
Boost.Interprocess provides two kinds of synchronization objects: anonymous objects are directly stored in the
shared memory, which makes them automatically available to all processes. Named objects are managed by the
operating system, are not stored in the shared memory, and can be referenced from programs by name.
Example 33.12 Using a named mutex with boost::interprocess::named_mutex

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/sync/named_mutex.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

managed_shared_memory managed_shm{open_or_create, "shm", 1024};

149

CHAPTER 33. BOOST.INTERPROCESS 33.3. SYNCHRONIZATION

int *i = managed_shm.find_or_construct<int>("Integer")();
named_mutex named_mtx{open_or_create, "mtx"};
named_mtx.lock();
++(*i);
std::cout << *i << '\n';
named_mtx.unlock();

}

Example 33.12 creates and uses a named mutex using the class boost::interprocess::named_mutex, which
is defined in boost/interprocess/sync/named_mutex.hpp.
The constructor of boost::interprocess::named_mutex expects a parameter specifying whether the mutex
should be created or opened and a name for the mutex. Every process that knows the name can open the same
mutex. To access the data in shared memory, the program needs to take ownership of the mutex by calling the
member function lock(). Because mutexes can only be owned by one process at a time, another process may
need to wait until the mutex has been released by unlock(). Once a process takes ownership of a mutex, it has
exclusive access to the resource the mutex guards. In Example 33.12, the resource is a variable of type int that is
incremented and written to the standard output stream.
If the sample program is started multiple times, each instance will print a value incremented by 1 compared to
the previous value. Thanks to the mutex, access to the shared memory and the variable itself is synchronized be-
tween different processes.
Example 33.13 uses an anonymous mutex of type boost::interprocess::interprocess_mutex, which
is defined in boost/interprocess/sync/interprocess_mutex.hpp. In order for the mutex to be
accessible for all processes, it is stored in the shared memory.
Example 33.13 Using an anonymous mutex with interprocess_mutex

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/sync/interprocess_mutex.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

managed_shared_memory managed_shm{open_or_create, "shm", 1024};
int *i = managed_shm.find_or_construct<int>("Integer")();
interprocess_mutex *mtx =

managed_shm.find_or_construct<interprocess_mutex>("mtx")();
mtx->lock();
++(*i);
std::cout << *i << '\n';
mtx->unlock();

}

Example 33.13 behaves exactly like the previous one. The only difference is the mutex, which is now stored
directly in shared memory. This can be done with the member functions construct() or find_or_constr
uct() from the class boost::interprocess::managed_shared_memory.
In addition to lock(), both boost::interprocess::named_mutex and boost::interprocess::inte
rprocess_mutex provide the member functions try_lock() and timed_lock(). They behave exactly like
their counterparts in the standard library and Boost.Thread. If recursive mutexes are required, Boost.Interprocess
provides two classes: boost::interprocess::named_recursive_mutex and boost::interprocess::
interprocess_recursive_mutex.
While mutexes guarantee exclusive access to a shared resource, condition variables control who has exclusive
access at what time. In general, the condition variables provided by Boost.Interprocess work like the ones pro-
vided by the C++11 standard library and Boost.Thread. They have similar interfaces, which makes users of these
libraries feel immediately at home when using these variables in Boost.Interprocess.
Example 33.14 Using a named condition with boost::interprocess::named_condition

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/sync/named_mutex.hpp>
#include <boost/interprocess/sync/named_condition.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <iostream>

150

CHAPTER 33. BOOST.INTERPROCESS 33.3. SYNCHRONIZATION

using namespace boost::interprocess;

int main()
{

managed_shared_memory managed_shm{open_or_create, "shm", 1024};
int *i = managed_shm.find_or_construct<int>("Integer")(0);
named_mutex named_mtx{open_or_create, "mtx"};
named_condition named_cnd{open_or_create, "cnd"};
scoped_lock<named_mutex> lock{named_mtx};
while (*i < 10)
{

if (*i % 2 == 0)
{

++(*i);
named_cnd.notify_all();
named_cnd.wait(lock);

}
else
{

std::cout << *i << std::endl;
++(*i);
named_cnd.notify_all();
named_cnd.wait(lock);

}
}
named_cnd.notify_all();
shared_memory_object::remove("shm");
named_mutex::remove("mtx");
named_condition::remove("cnd");

}

Example 33.14 uses a condition variable of type boost::interprocess::named_condition, which is de-
fined in boost/interprocess/sync/named_condition.hpp. Because it is a named variable, it does
not need to be stored in shared memory.
The application uses a while loop to increment a variable of type int, which is stored in shared memory. Al-
though the variable is incremented with each iteration of the loop, it will only be written to the standard output
stream with every second iteration – only odd numbers are written.
Every time the variable is incremented by 1, the member function wait() of the condition variable named_cnd
is called. A lock – in Example 33.14, the variable named lock – is passed to this member function. This is based
on the RAII idiom of taking ownership of a mutex inside the constructor and releasing it inside the destructor.
The lock is created before the while loop and takes ownership of the mutex for the entire execution of the pro-
gram. However, if passed to wait() as a parameter, the lock is automatically released.
Condition variables are used to wait for a signal indicating that the wait is over. Synchronization is controlled
by the member functions wait() and notify_all(). When a program calls wait(), ownership of the corre-
sponding mutex is released. The program then waits until notify_all() is called on the same condition vari-
able.
When started, Example 33.14 does not seem to do much. After the variable i is incremented from 0 to 1 within
the while loop, the program waits for a signal by calling wait(). In order to fire the signal, a second instance of
the program needs to be started.
The second instance tries to take ownership of the same mutex before entering the while loop. This succeeds
since the first instance released the mutex by calling wait(). Because the variable has been incremented once,
the second instance executes the else branch of the if expression and writes the current value to the standard
output stream. Then the value is incremented by 1.
Now the second instance also calls wait(). However, before it does, it calls notify_all(), which ensures
that the two instances cooperate correctly. The first instance is notified and tries to take ownership of the mutex
again, which is still owned by the second instance. However, because the second instance calls wait() right
after calling notify_all(), which automatically releases ownership, the first instance will take ownership at
that point.
Both instances alternate, incrementing the variable in the shared memory. However, only one instance writes the
value to the standard output stream. As soon as the variable reaches the value 10, the while loop is finished. In

151

CHAPTER 33. BOOST.INTERPROCESS 33.3. SYNCHRONIZATION

order to avoid having the other instance wait for a signal forever, notify_all() is called one more time after
the loop. Before terminating, the shared memory, the mutex, and the condition variable are destroyed.
Just as there are two types of mutexes – an anonymous type that must be stored in shared memory and a named
type – there are also two types of condition variables. Example 33.15 is a rewrite of the previous example using
an anonymous condition variable.
Example 33.15 Using an anonymous condition with interprocess_condition

#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/sync/interprocess_mutex.hpp>
#include <boost/interprocess/sync/interprocess_condition.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>
#include <iostream>

using namespace boost::interprocess;

int main()
{

managed_shared_memory managed_shm{open_or_create, "shm", 1024};
int *i = managed_shm.find_or_construct<int>("Integer")(0);
interprocess_mutex *mtx =

managed_shm.find_or_construct<interprocess_mutex>("mtx")();
interprocess_condition *cnd =

managed_shm.find_or_construct<interprocess_condition>("cnd")();
scoped_lock<interprocess_mutex> lock{*mtx};
while (*i < 10)
{

if (*i % 2 == 0)
{

++(*i);
cnd->notify_all();
cnd->wait(lock);

}
else
{

std::cout << *i << std::endl;
++(*i);
cnd->notify_all();
cnd->wait(lock);

}
}
cnd->notify_all();
shared_memory_object::remove("shm");

}

Example 33.15 works exactly like the previous one and also needs to be started twice to increment the int vari-
able ten times.
Besides mutexes and condition variables, Boost.Interprocess also supports semaphores and file locks. Semaphores
are similar to condition variables except they do not distinguish between two states; instead, they are based on a
counter. File locks behave like mutexes, except they are used with files on a hard drive, rather than objects in
memory.
In the same way that the C++11 standard library and Boost.Thread distinguish between different types of mu-
texes and locks, Boost.Interprocess provides several mutexes and locks. For example, mutexes can be owned
exclusively or non-exclusively. This is helpful if multiple processes need to read data simultaneously since an ex-
clusive mutex is only required to write data. Different classes for locks are available to apply the RAII idiom to
individual mutexes.
Names should be unique unless anonymous synchronization objects are used. Even though mutexes and condi-
tion variables are objects based on different classes, this may not necessarily hold true for the operating system
dependent interfaces wrapped by Boost.Interprocess. On Windows, the same operating system functions are used
for both mutexes and condition variables. If the same name is used for two objects, one of each type, the program
will not behave correctly on Windows.

152

Part VII

Streams and Files

153

The following libraries facilitate working with streams and files.

• Boost.IOStreams provides streams that go far beyond what the standard library offers. Boost.IOStreams
gives you access to more streams to read and write data from and to many different sources and sinks. In
addition, filters enable a variety of operations such as compressing/uncompressing data while reading or
writing.

• Boost.Filesystem provides access to the filesystem. With Boost.Filesystem you can, for example, copy
files or iterate over files in a directory.

154

Chapter 34

Boost.IOStreams

This chapter introduces the library Boost.IOStreams. Boost.IOStreams breaks up the well-known streams from
the standard library into smaller components. The library defines two concepts: device, which describes data
sources and sinks, and stream, which describes an interface for formatted input/output based on the interface
from the standard library. A stream defined by Boost.IOStreams isn’t automatically connected to a data source
or sink.
Boost.IOStreams provides numerous implementations of the two concepts. For example, there is the device
boost::iostreams::mapped_file, which loads a file partially or completely into memory. The stream
boost::iostreams::stream can be connected to a device like boost::iostreams::mapped_file to use
the familiar stream operators operator<< and operator>> to read and write data.
In addition to boost::iostreams::stream, Boost.IOStreams provides the stream boost::iostreams::
filtering_stream, which lets you add data filters. For example, you can use boost::iostreams::gzip_c
ompressor to write data compressed in the GZIP format.
Boost.IOStreams can also be used to connect to platform-specific objects. The library provides devices to con-
nect to a Windows handle or a file descriptor. That way objects from low-level APIs can be made available in
platform-independent C++ code.
The classes and functions provided by Boost.IOStreams are defined in the namespace boost::iostreams.
There is no master header file. Because Boost.IOStreams contains more than header files, it must be prebuilt.
This can be important because, depending on how Boost.IOStreams has been prebuilt, support for some features
could be missing.

34.1 Devices
Devices are classes that provide read and write access to objects that are usually outside of a process – for exam-
ple, files. However, you can also access internal objects, such as arrays, as devices.
A device is nothing more than a class with the member function read() or write(). A device can be connected
with a stream so you can read and write formatted data rather than using the read() and write() member func-
tions directly.
Example 34.1 Using an array as a device with boost::iostreams::array_sink

#include <boost/iostreams/device/array.hpp>
#include <boost/iostreams/stream.hpp>
#include <iostream>

using namespace boost::iostreams;

int main()
{

char buffer[16];
array_sink sink{buffer};
stream<array_sink> os{sink};
os << "Boost" << std::flush;
std::cout.write(buffer, 5);

}

155

http://www.boost.org/libs/iostreams

CHAPTER 34. BOOST.IOSTREAMS 34.1. DEVICES

Example 34.1 uses the device boost::iostreams::array_sink to write data to an array. The array is passed
as a parameter to the constructor. Afterwards, the device is connected with a stream of type boost::iostre
ams::stream. A reference to the device is passed to the constructor of boost::iostreams::stream, and the
type of the device is passed as a template parameter to boost::iostreams::stream.
The example uses the operator operator<< to write “Boost” to the stream. The stream forwards the data to
the device. Because the device is connected to the array, “Boost” is stored in the first five elements of the array.
Since the array’s contents are written to standard output, Boost will be displayed when you run the example.
Example 34.2 Using an array as a device with boost::iostreams::array_source

#include <boost/iostreams/device/array.hpp>
#include <boost/iostreams/stream.hpp>
#include <string>
#include <iostream>

using namespace boost::iostreams;

int main()
{

char buffer[16];
array_sink sink{buffer};
stream<array_sink> os{sink};
os << "Boost" << std::endl;

array_source source{buffer};
stream<array_source> is{source};
std::string s;
is >> s;
std::cout << s << '\n';

}

Example 34.2 is based on the previous example. The string written with boost::iostreams::array_sink to
an array is read with boost::iostreams::array_source.
boost::iostreams::array_source is used like boost::iostreams::array_sink. While boost::ios
treams::array_sink supports only write operations, boost::iostreams::array_source supports only
read. boost::iostreams::array supports both write and read operations.
Please note that boost::iostreams::array_source and boost::iostreams::array_sink receive a
reference to an array. The array must not be destroyed while the devices are still in use.
Example 34.3 uses a device of type boost::iostreams::back_insert_device, instead of boost::iostr
eams::array_sink. This device can be used to write data to any container that provides the member function
insert(). The device calls this member function to forward data to the container.
The example uses boost::iostreams::back_insert_device to write “Boost” to a vector. Afterwards,
“Boost” is read from boost::iostreams::array_source. The address of the beginning of the vector and
the size are passed as parameters to the constructor of boost::iostreams::array_source.
Example 34.3 displays Boost.
Example 34.3 Using a vector as a device with boost::iostreams::back_insert_device

#include <boost/iostreams/device/array.hpp>
#include <boost/iostreams/device/back_inserter.hpp>
#include <boost/iostreams/stream.hpp>
#include <vector>
#include <string>
#include <iostream>

using namespace boost::iostreams;

int main()
{

std::vector<char> v;
back_insert_device<std::vector<char>> sink{v};
stream<back_insert_device<std::vector<char>>> os{sink};
os << "Boost" << std::endl;

156

CHAPTER 34. BOOST.IOSTREAMS 34.1. DEVICES

array_source source{v.data(), v.size()};
stream<array_source> is{source};
std::string s;
is >> s;
std::cout << s << '\n';

}

Example 34.4 uses the device boost::iostreams::file_source to read files. While the previously intro-
duced devices don’t provide member functions, boost::iostreams::file_source provides is_open() to
test whether a file was opened successfully. It also provides the member function close() to explicitly close a
file. You don’t need to call close() because the destructor of boost::iostreams::file_source closes a
file automatically.
Example 34.4 Using a file as a device with boost::iostreams::file_source

#include <boost/iostreams/device/file.hpp>
#include <boost/iostreams/stream.hpp>
#include <iostream>

using namespace boost::iostreams;

int main()
{

file_source f{"main.cpp"};
if (f.is_open())
{

stream<file_source> is{f};
std::cout << is.rdbuf() << '\n';
f.close();

}
}

Besides boost::iostreams::file_source, Boost.IOStreams also provides the device boost::iostre
ams::mapped_file_source to load a file partially or completely into memory. boost::iostreams::mapp
ed_file_source defines a member function data() to receive a pointer to the respective memory area. That
way, data can be randomly accessed in a file without having to read the file sequentially.
For write access to files, Boost.IOStreams provides the devices boost::iostreams::file_sink and boost:
:iostreams::mapped_file_sink.
Example 34.5 Using file_descriptor_source and file_descriptor_sink

#include <boost/iostreams/device/file_descriptor.hpp>
#include <boost/iostreams/stream.hpp>
#include <iostream>
#include <Windows.h>

using namespace boost::iostreams;

int main()
{

HANDLE handles[2];
if (CreatePipe(&handles[0], &handles[1], nullptr, 0))
{

file_descriptor_source src{handles[0], close_handle};
stream<file_descriptor_source> is{src};

file_descriptor_sink snk{handles[1], close_handle};
stream<file_descriptor_sink> os{snk};

os << "Boost" << std::endl;
std::string s;
std::getline(is, s);
std::cout << s;

}
}

157

CHAPTER 34. BOOST.IOSTREAMS 34.2. FILTERS

Example 34.5 uses the devices boost::iostreams::file_descriptor_source and boost::iostreams:
:file_descriptor_sink. These devices support read and write operations on platform-specific objects. On
Windows these objects are handles, and on POSIX operating systems they are file descriptors.
Example 34.5 calls the Windows function CreatePipe() to create a pipe. The read and write ends of the pipe
are received in the array handles. The read end of the pipe is passed to the device boost::iostreams::file
_descriptor_source, and the write end is passed to the device boost::iostreams::file_descriptor_
sink. Everything written to the stream os, which is connected to the write end, can be read from the stream is,
which is connected to the read end. Example 34.5 sends “Boost” through the pipe and to standard output.
The constructors of boost::iostreams::file_descriptor_source and boost::iostreams::file_de
scriptor_sink expect two parameters. The first parameter is a Windows handle or – if the program is run on a
POSIX system – a file descriptor. The second parameter must be either boost::iostreams::close_handle
or boost::iostreams::never_close_handle. This parameter specifies whether or not the destructor closes
the Windows handle or file descriptor.

34.2 Filters
Besides devices, Boost.IOStreams also provides filters, which operate in front of devices to filter data read from
or written to devices. The following examples use boost::iostreams::filtering_istream and boost:
:iostreams::filtering_ostream. They replace boost::iostreams::stream, which doesn’t support
filters.
Example 34.6 Using boost::iostreams::regex_filter

#include <boost/iostreams/device/array.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/regex.hpp>
#include <boost/regex.hpp>
#include <iostream>

using namespace boost::iostreams;

int main()
{

char buffer[16];
array_sink sink{buffer};
filtering_ostream os;
os.push(regex_filter{boost::regex{"Bo+st"}, "C++"});
os.push(sink);
os << "Boost" << std::flush;
os.pop();
std::cout.write(buffer, 3);

}

Example 34.6 uses the device boost::iostreams::array_sink to write data to an array. The data is sent
through a filter of type boost::iostreams::regex_filter, which replaces characters. The filter expects
a regular expression and a format string. The regular expression describes what to replace. The format string
specifies what the characters should be replaced with. The example replaces “Boost” with “C++”. The filter will
match one or more consecutive instances of the letter “o” in “Boost,” but not zero instances.
The filter and the device are connected with the stream boost::iostreams::filtering_ostream. This
class provides a member function push(), which the filter and the device are passed to.
The filter(s) must be passed before the device; the order is important. You can pass one or more filters, but once a
device has been passed, the stream is complete, and you must not call push() again.
The filter boost::iostreams::regex_filter can’t process data character by character because regular ex-
pressions need to look at character groups. That’s why boost::iostreams::regex_filter starts filtering
only after a write operation is complete and all data is available. This happens when the device is removed from
the stream with the member function pop(). Example 34.6 calls pop() after “Boost” has been written to the
stream. Without the call to pop(), boost::iostreams::regex_filter won’t process any data and won’t
forward data to the device.
Please note that you must not use a stream that isn’t connected with a device. However, you can complete a
stream if you add a device with push() after a call to pop().

158

CHAPTER 34. BOOST.IOSTREAMS 34.2. FILTERS

Example 34.6 displays C++.
Example 34.7 Accessing filters in boost::iostreams::filtering_ostream

#include <boost/iostreams/device/array.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/counter.hpp>
#include <iostream>

using namespace boost::iostreams;

int main()
{

char buffer[16];
array_sink sink{buffer};
filtering_ostream os;
os.push(counter{});
os.push(sink);
os << "Boost" << std::flush;
os.pop();
counter *c = os.component<counter>(0);
std::cout << c->characters() << '\n';
std::cout << c->lines() << '\n';

}

Example 34.7 uses the filter boost::iostreams::counter, which counts characters and lines. This class pro-
vides the member functions characters() and lines().
boost::iostreams::filtering_stream provides the member function component() to access a filter.
The index of the respective filter must be passed as a parameter. Because component() is a template, the type
of the filter must be passed as a template parameter. component() returns a pointer to the filter. It returns 0 if an
incorrect filter type is passed as a template parameter.
Example 34.7 writes five characters to the stream. It does not write a newline (“\n”). Thus, the example displays
5 and 0.
Example 34.8 Writing and reading data compressed with ZLIB

#include <boost/iostreams/device/array.hpp>
#include <boost/iostreams/device/back_inserter.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/zlib.hpp>
#include <vector>
#include <string>
#include <iostream>

using namespace boost::iostreams;

int main()
{

std::vector<char> v;
back_insert_device<std::vector<char>> snk{v};
filtering_ostream os;
os.push(zlib_compressor{});
os.push(snk);
os << "Boost" << std::flush;
os.pop();

array_source src{v.data(), v.size()};
filtering_istream is;
is.push(zlib_decompressor{});
is.push(src);
std::string s;
is >> s;
std::cout << s << '\n';

}

159

CHAPTER 34. BOOST.IOSTREAMS 34.2. FILTERS

Example 34.8 uses the stream boost::iostreams::filtering_istream in addition to boost::iostre
ams::filtering_ostream. This stream is used when you want to read data with filters. In the example, com-
pressed data is written and read again.
Boost.IOStreams provides several data compression filters. The class boost::iostreams::zlib_compres
sor compresses data in the ZLIB format. To uncompress data in the ZLIB format, use the class boost::iostre
ams::zlib_decompressor. These filters are added to the streams using push().
Example 34.8 writes “Boost” to the vector v in compressed form and to the string s in uncompressed form. The
example displays Boost.

Note

Please note that on Windows, the Boost.IOStreams prebuilt library doesn’t support data
compression because, by default, the library is built with the macro NO_ZLIB on Windows.
You must undefine this macro, define ZLIB_LIBPATH and ZLIB_SOURCE, and rebuild to get
ZLIB support on Windows.

160

Chapter 35

Boost.Filesystem

The library Boost.Filesystem makes it easy to work with files and directories. It provides a class called boost::
filesystem::path that processes paths. In addition, many free-standing functions are available to handle tasks
like creating directories or checking whether a file exists.
Boost.Filesystem has been revised several times. This chapter introduces Boost.Filesystem 3, the current version.
This version has been the default since the Boost C++ Libraries 1.46.0. Boost.Filesystem 2 was last shipped with
version 1.49.0.

35.1 Paths
boost::filesystem::path is the central class in Boost.Filesystem for representing and processing paths.
Definitions can be found in the namespace boost::filesystem and in the header file boost/filesystem.
hpp. Paths can be built by passing a string to the constructor of boost::filesystem::path (see Example 35.1).
Example 35.1 Using boost::filesystem::path

#include <boost/filesystem.hpp>

using namespace boost::filesystem;

int main()
{

path p1{"C:\\"};
path p2{"C:\\Windows"};
path p3{L"C:\\Boost C++ \u5E93"};

}

boost::filesystem::path can be initialized with wide strings. Wide strings are interpreted as Unicode
and make it easy to create paths using characters from nearly any language. This is a crucial difference from
Boost.Filesystem 2, which provided separate classes, such as boost::filesystem::path and boost::fil
esystem::wpath, for different string types.
Please note that Boost.Filesystem doesn’t support std::u16string or std::u32string. Your compiler aborts
with an error if you try to initialize boost::filesystem::path with one of these string types.
None of the constructors of boost::filesystem::path validate paths or check whether the given file or di-
rectory exists. Thus, boost::filesystem::path can be instantiated even with meaningless paths.
Example 35.2 Meaningless paths with boost::filesystem::path

#include <boost/filesystem.hpp>

using namespace boost::filesystem;

int main()
{

path p1{"..."};
path p2{"\\"};
path p3{"@:"};

}

161

http://www.boost.org/libs/filesystem

CHAPTER 35. BOOST.FILESYSTEM 35.1. PATHS

Example 35.2 runs without any problems because paths are just strings. boost::filesystem::path only pro-
cesses strings; the file system is not accessed.
Because boost::filesystem::path processes strings, the class provides several member functions to retrieve
a path as a string.
In general, Boost.Filesystem differentiates between native paths and generic paths. Native paths are operating
system specific and must be used when calling operating system functions. Generic paths are portable and inde-
pendent of the operating system.
The member functions native(), string() and wstring() all return paths in the native format. When run on
Windows, Example 35.3 writes C:\Windows\System to the standard output stream three times.
The member functions generic_string() and generic_wstring() both return paths in a generic format.
These are portable paths; the string is normalized based on rules of the POSIX standard. Generic paths are there-
fore identical to paths used on Linux. For example, the slash is used as the separator for directories. If Exam-
ple 35.3 is run on Windows, both generic_string() and generic_wstring() write C:/Windows/System
to the standard output stream.
Example 35.3 Retrieving paths from boost::filesystem::path as strings
#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\Windows\\System"};

#ifdef BOOST_WINDOWS_API
std::wcout << p.native() << '\n';

#else
std::cout << p.native() << '\n';

#endif

std::cout << p.string() << '\n';
std::wcout << p.wstring() << '\n';

std::cout << p.generic_string() << '\n';
std::wcout << p.generic_wstring() << '\n';

}

The return value of member functions returning native paths depends on the operating system the program is ex-
ecuted on. The return value of member functions returning generic paths is independent of the operating system.
Generic paths uniquely identify files and directories independently from the operating system and therefore make
it easy to write platform-independent code.
Because boost::filesystem::path can be initialized with different string types, several member functions
are provided to retrieve paths in different string types. While string() and generic_string() return a string
of type std::string, wstring() and generic_wstring() return a string of type std::wstring.
The return type of native() depends on the operating system the program was compiled for. On Windows a
string of type std::wstring is returned. On Linux it is a string of type std::string.
The constructor of boost::filesystem::path supports both generic and platform-dependent paths. In Ex-
ample 35.3, the path “C:\\Windows\\System” is Windows specific and not portable. Notice also that because the
backslash is an escape character in C++, it must be escaped itself. This path will only be recognized correctly by
Boost.Filesystem if the program is run on Windows. When executed on a POSIX compliant operating system
such as Linux, this example will return C:\Windows\System for all member functions called. Since the back-
slash is not used as a separator on Linux in either the portable or the native format, Boost.Filesystem does not
recognize this character as a separator for files and directories.
The macro BOOST_WINDOWS_API comes from Boost.System and is defined if the example is compiled on Win-
dows. The respective macro for POSIX operating systems is called BOOST_POSIX_API.
Example 35.4 Initializing boost::filesystem::path with a portable path
#include <boost/filesystem.hpp>
#include <iostream>

162

CHAPTER 35. BOOST.FILESYSTEM 35.1. PATHS

using namespace boost::filesystem;

int main()
{

path p{"/"};
std::cout << p.string() << '\n';
std::cout << p.generic_string() << '\n';

}

Example 35.4 uses a portable path to initialize boost::filesystem::path.
Because generic_string() returns a portable path, its value will be a slash (“/”), the same as was used to ini-
tialize boost::filesystem::path. However, the member function string() returns different values de-
pending on the platform. On Windows and Linux it returns “/”. The output is the same because Windows accepts
the slash as a directory separator even though it prefers the backslash.
Example 35.5 Accessing components of a path

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\Windows\\System"};
std::cout << p.root_name() << '\n';
std::cout << p.root_directory() << '\n';
std::cout << p.root_path() << '\n';
std::cout << p.relative_path() << '\n';
std::cout << p.parent_path() << '\n';
std::cout << p.filename() << '\n';

}

boost::filesystem::path provides several member functions to access certain components of a path. If
Example 35.5 is executed on Windows, the string “C:\\Windows\\System” is interpreted as a platform-dependent
path. Consequently, root_name() returns "C:", root_directory() returns "\", root_path() returns "C:
\", relative_path() returns "Windows\System", parent_path() returns "C:\Windows", and filen
ame() returns "System".
All member functions return platform-dependent paths because boost::filesystem::path stores paths in a
platform-dependent format internally. To retrieve paths in a portable format, member functions such as generic
_string() need to be called explicitly.
If Example 35.5 is executed on Linux, the returned values are different. Most of the member functions return
an empty string, except relative_path() and filename(), which return "C:\Windows\System". This
means that the string “C:\\Windows\\System” is interpreted as a file name on Linux, which is understandable
given that it is neither a portable encoding of a path nor a platform-dependent encoding on Linux. Therefore,
Boost.Filesystem has no choice but to interpret it as a file name.
Boost.Filesystem provides additional member functions to verify whether a path contains a specific substring.
These member functions are: has_root_name(), has_root_directory(), has_root_path(), has_rel
ative_path(), has_parent_path(), and has_filename(). Each member function returns a value of type
bool.
There are two more member functions that can split a file name into its components. They should only be called
if has_filename() returns true. Otherwise, they will return empty strings because there is nothing to split if
there is no file name.
Example 35.6 Receiving file name and file extension

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"photo.jpg"};

163

CHAPTER 35. BOOST.FILESYSTEM 35.1. PATHS

std::cout << p.stem() << '\n';
std::cout << p.extension() << '\n';

}

Example 35.6 returns "photo" for stem() and ".jpg" for extension().
Instead of accessing the components of a path via member function calls, you can also iterate over the compo-
nents.
Example 35.7 Iterating over components of a path
#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\Windows\\System"};
for (const path &pp : p)

std::cout << pp << '\n';
}

If executed on Windows, Example 35.7 will successively output "C:", "/", "Windows" and "System". On
Linux, the output will be "C:\Windows\System".
While the previous examples introduced various member functions to access different components of a path, Ex-
ample 35.8 uses a member function to modify a path.
Example 35.8 Concatenating paths with operator/=

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\"};
p /= "Windows\\System";
std::cout << p.string() << '\n';

}

Using operator/=, Example 35.8 appends one path to another. On Windows, the program outputs C:\Wind
ows\System. On Linux, the output is C:\/Windows\System, since the slash is used as a separator for files and
directories. The slash is also the reason why operator/= has been overloaded; after all, the slash is part of the
operator.
Besides operator/=, Boost.Filesystem provides the member functions remove_filename(), replace_exte
nsion(), make_absolute(), and make_preferred() to modify paths. The last member function mentioned
is particularly designed for use on Windows.
Example 35.9 Preferred notation with make_preferred()

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:/Windows/System"};
std::cout << p.make_preferred() << '\n';

}

Even though the backslash is used as the separator for files and directories by default, Windows still accepts the
slash. “C:/Windows/System” is therefore a valid native path. With make_preferred() such a path can be con-
verted to the preferred notation on Windows. Example 35.9 displays "C:\Windows\System".
The member function make_preferred() has no effect on POSIX compliant operating systems such as Linux.

164

CHAPTER 35. BOOST.FILESYSTEM 35.2. FILES AND DIRECTORIES

Please note that make_preferred() not only returns the converted path, but also modifies the object it has been
called on. p contains “C:\Windows\System” after the call.

35.2 Files and Directories
The member functions presented with boost::filesystem::path simply process strings. They access indi-
vidual components of a path, append paths to one another, and so on.
In order to work with physical files and directories on the hard drive, several free-standing functions are pro-
vided. They expect one or more parameters of type boost::filesystem::path and call operating system
functions internally.
Prior to introducing the various functions, it is important to understand what happens in case of an error. All of
the functions call operating system functions that may fail. Therefore, Boost.Filesystem provides two variants of
the functions that behave differently in case of an error:

• The first variant throws an exception of type boost::filesystem::filesystem_error. This class is
derived from boost::system::system_error and thus fits into the Boost.System framework.

• The second variant expects an object of type boost::system::error_code as an additional parame-
ter. This object is passed by reference and can be examined after the function call. In case of a failure, the
object stores the corresponding error code.

boost::system::system_error and boost::system::error_code are presented in Chapter 55. In ad-
dition to the inherited interface from boost::system::system_error, boost::filesystem::filesy
stem_error provides two member functions called path1() and path2(), both of which return an object
of type boost::filesystem::path. Since there are functions that expect two parameters of type boost::
filesystem::path, these two member functions provide an easy way to retrieve the corresponding paths in
case of a failure.
Example 35.10 introduces boost::filesystem::status(), which queries the status of a file or directory.
This function returns an object of type boost::filesystem::file_status, which can be passed to addi-
tional helper functions for evaluation. For example, boost::filesystem::is_directory() returns true if
the status for a directory was queried. Besides boost::filesystem::is_directory(), other functions are
available, including boost::filesystem::is_regular_file(), boost::filesystem::is_symlink(),
and boost::filesystem::exists(), all of which return a value of type bool.
Example 35.10 Using boost::filesystem::status()

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\"};
try
{

file_status s = status(p);
std::cout << std::boolalpha << is_directory(s) << '\n';

}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';
}

}

The function boost::filesystem::symlink_status() queries the status of a symbolic link. With boost:
:filesystem::status() the status of the file referred to by the symbolic link is queried. On Windows, sym-
bolic links are identified by the file extension lnk.
Example 35.11 Using boost::filesystem::file_size()

#include <boost/filesystem.hpp>
#include <iostream>

165

CHAPTER 35. BOOST.FILESYSTEM 35.2. FILES AND DIRECTORIES

using namespace boost::filesystem;

int main()
{

path p{"C:\\Windows\\win.ini"};
boost::system::error_code ec;
boost::uintmax_t filesize = file_size(p, ec);
if (!ec)

std::cout << filesize << '\n';
else

std::cout << ec << '\n';
}

A different category of functions makes it possible to query attributes. The function boost::filesystem::
file_size() returns the size of a file in bytes. The return value is of type boost::uintmax_t, which is a type
definition for unsigned long long. The type is provided by Boost.Integer.
Example 35.11 uses an object of type boost::system::error_code, which needs to be evaluated explicitly to
determine whether the call to boost::filesystem::file_size() was successful.
Example 35.12 Using boost::filesystem::last_write_time()

#include <boost/filesystem.hpp>
#include <iostream>
#include <ctime>

using namespace boost::filesystem;

int main()
{

path p{"C:\\Windows\\win.ini"};
try
{

std::time_t t = last_write_time(p);
std::cout << std::ctime(&t) << '\n';

}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';
}

}

To determine the time a file was modified last, boost::filesystem::last_write_time() can be used (see
Example 35.12).
Example 35.13 Using boost::filesystem::space()

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\"};
try
{

space_info s = space(p);
std::cout << s.capacity << '\n';
std::cout << s.free << '\n';
std::cout << s.available << '\n';

}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';
}

166

CHAPTER 35. BOOST.FILESYSTEM 35.2. FILES AND DIRECTORIES

}

boost::filesystem::space() retrieves the total and remaining disk space (see Example 35.13). It returns
an object of type boost::filesystem::space_info, which provides three public member variables: capac
ity, free, and available, all of type boost::uintmax_t. The disk space is in bytes.
While the functions presented so far leave files and directories untouched, there are several functions that can be
used to create, rename, or delete files and directories.
Example 35.14 Creating, renaming, and deleting directories

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"C:\\Test"};
try
{

if (create_directory(p))
{

rename(p, "C:\\Test2");
boost::filesystem::remove("C:\\Test2");

}
}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';
}

}

Example 35.14 should be self-explanatory. Looking closely, one can see that it’s not always an object of type
boost::filesystem::path that is passed to functions, but rather a simple string. This is possible because
boost::filesystem::path provides a non-explicit constructor that will convert strings to objects of type
boost::filesystem::path. This makes it easy to use Boost.Filesystem since it’s not required to create paths
explicitly.

Note

In Example 35.14, boost::filesystem::remove() is explicitly called using its names-
pace. Otherwise, Visual C++ 2013 would confuse the function with remove() from the
header file stdio.h.

Additional functions such as create_symlink() to create symbolic links or copy_file() and copy_direct
ory() to copy files and directories are available as well.
Example 35.15 Using boost::filesystem::absolute()

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

try
{

std::cout << absolute("photo.jpg") << '\n';
}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';

167

CHAPTER 35. BOOST.FILESYSTEM 35.3. DIRECTORY ITERATORS

}
}

Example 35.15 presents a function that creates an absolute path based on a file name or section of a path. The
path displayed depends on which directory the program is started in. For example, if the program was started in
C:\, the output would be "C:\photo.jpg".
To retrieve an absolute path relative to a different directory, a second parameter can be passed to boost::files
ystem::absolute().
Example 35.16 Creating an absolute path relative to another directory

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

try
{

std::cout << absolute("photo.jpg", "D:\\") << '\n';
}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';
}

}

Example 35.16 displays "D:\photo.jpg".
The last example in this section, Example 35.17, introduces a useful helper function to retrieve the current work-
ing directory.
Example 35.17 Using boost::filesystem::current_path()

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

try
{

std::cout << current_path() << '\n';
current_path("C:\\");
std::cout << current_path() << '\n';

}
catch (filesystem_error &e)
{

std::cerr << e.what() << '\n';
}

}

Example 35.17 calls boost::filesystem::current_path() multiple times. If the function is called with-
out parameters, the current working directory is returned. If an object of type boost::filesystem::path is
passed, the current working directory is set.

35.3 Directory Iterators
Boost.Filesystem provides the iterator boost::filesystem::directory_iterator to iterate over files in a
directory (see Example 35.18).

168

CHAPTER 35. BOOST.FILESYSTEM 35.4. FILE STREAMS

Example 35.18 Iterating over files in a directory

#include <boost/filesystem.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p = current_path();
directory_iterator it{p};
while (it != directory_iterator{})

std::cout << *it++ << '\n';
}

boost::filesystem::directory_iterator is initialized with a path to retrieve an iterator pointing to the
beginning of a directory. To retrieve the end of a directory, the class must be instantiated with the default con-
structor.
Entries can be created or deleted while iterating without invalidating the iterator. However, whether changes be-
come visible during the iteration is undefined. For example, the iterator might not point to newly created files. To
ensure that all current entries are accessible, restart the iteration.
To recursively iterate over a directory and subdirectories, Boost.Filesystem provides the iterator boost::files
ystem::recursive_directory_iterator.

35.4 File Streams
The standard defines various file streams in the header file fstream. These streams do not accept parameters
of type boost::filesystem::path. If you want to open file streams with objects of type boost::filesys
tem::path, include the header file boost/filesystem/fstream.hpp.
Example 35.19 Using boost::filesystem::ofstream

#include <boost/filesystem/fstream.hpp>
#include <iostream>

using namespace boost::filesystem;

int main()
{

path p{"test.txt"};
ofstream ofs{p};
ofs << "Hello, world!\n";

}

Example 35.19 opens a file with the help of the class boost::filesystem::ofstream. An object of type
boost::filesystem::path can be passed to the constructor of boost::filesystem::ofstream. The
member function open() also accepts a parameter of type boost::filesystem::path.

169

Part VIII

Time

170

The following libraries process time values.

• Boost.DateTime defines classes for time points and periods – for both time of day and calendar dates – and
functions to process them. For example, it is possible to iterate over dates.

• Boost.Chrono and Boost.Timer provide clocks to measure time. The clocks provided by Boost.Timer are
specialized for measuring code execution time and are only used when optimizing code.

171

Chapter 36

Boost.DateTime

The library Boost.DateTime can be used to process time data such as calendar dates and times. In addition, Boost.DateTime
provides extensions to account for time zones and supports formatted input and output of calendar dates and
times. If you are looking for functions to get the current time or measure time, see Boost.Chrono in Chapter 37.

36.1 Calendar Dates
Boost.DateTime only supports calendar dates based on the Gregorian calendar, which in general is not a prob-
lem since this is the most widely used calendar. If you arrange a meeting with someone for May 12, 2014, you
don’t need to say that the date is based on the Gregorian calendar.
The Gregorian calendar was introduced by Pope Gregory XIII in 1582. Boost.DateTime supports calendar dates
for the years 1400 to 9999, which means that support goes back before the year 1582. Thus, you can use Boost.DateTime
for any calendar date after the year 1400 as long as that date is converted to the Gregorian calendar. To process
earlier dates, Boost.DateTime has to be extended by a new calendar.
The header file boost/date_time/gregorian/gregorian.hpp contains definitions for all classes and
functions that process calendar dates. These functions and classes can be found in the namespace boost::greg
orian. To create a date, use the class boost::gregorian::date.
boost::gregorian::date provides several constructors to create dates. The most basic constructor takes a
year, a month, and a day as parameters. If an invalid value is given, an exception will be thrown of type boost:
:gregorian::bad_day_of_month, boost::gregorian::bad_year, or boost::gregorian::bad_mo
nth. All of these classes are derived from std::out_of_range.
Example 36.1 Creating a date with boost::gregorian::date

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

int main()
{

boost::gregorian::date d{2014, 1, 31};
std::cout << d.year() << '\n';
std::cout << d.month() << '\n';
std::cout << d.day() << '\n';
std::cout << d.day_of_week() << '\n';
std::cout << d.end_of_month() << '\n';

}

As shown in Example 36.1, there are many member functions available. Some member functions, such as year(),
month(), and day(), return the respective parts of a date, and others, such as day_of_week() and end_of_mo
nth(), calculate values.
The constructor of boost::gregorian::date expects numeric values for year, month, and day to set a date.
However, the output of the sample program is Jan for the month and Fri for the day of the week. The return
values of month() and day_of_week() are not regular numeric values, but values of type boost::gregorian::date::month_type
and boost::gregorian::date::day_of_week_type. Boost.DateTime provides comprehensive support for formatted
input and output, so it is possible to adjust the output from, for example, Jan to 1.

172

http://www.boost.org/libs/date_time

CHAPTER 36. BOOST.DATETIME 36.1. CALENDAR DATES

The default constructor of boost::gregorian::date creates an invalid date. An invalid date can also be cre-
ated explicitly by passing boost::date_time::not_a_date_time as the sole parameter to the constructor.
Besides calling a constructor directly, an object of type boost::gregorian::date can be created via free-
standing functions and member functions of other classes.
Example 36.2 uses the class boost::gregorian::day_clock, which returns the current date. The member
function universal_day() returns a UTC date, which is independent of time zones and daylight savings. UTC
is the international abbreviation for the universal time. boost::gregorian::day_clock also provides a mem-
ber function called local_day(), which takes local settings into account. To retrieve the current date within the
local time zone, use local_day().
The namespace boost::gregorian contains free-standing functions to convert a date stored as a string into
an object of type boost::gregorian::date. Example 36.2 converts a date in the ISO 8601 format using the
function boost::gregorian::date_from_iso_string(). Other functions include: boost::gregorian:
:from_simple_string() and boost::gregorian::from_us_string().
Example 36.2 Getting a date from a clock or a string

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()
{

date d = day_clock::universal_day();
std::cout << d.year() << '\n';
std::cout << d.month() << '\n';
std::cout << d.day() << '\n';

d = date_from_iso_string("20140131");
std::cout << d.year() << '\n';
std::cout << d.month() << '\n';
std::cout << d.day() << '\n';

}

While boost::gregorian::date marks a specific time, boost::gregorian::date_duration denotes a
duration.
Example 36.3 Using boost::gregorian::date_duration

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()
{

date d1{2014, 1, 31};
date d2{2014, 2, 28};
date_duration dd = d2 - d1;
std::cout << dd.days() << '\n';

}

Because boost::gregorian::date overloads operator-, two points in time can be subtracted (see Exam-
ple 36.3). The return value is of type boost::gregorian::date_duration and marks the duration between
the two dates.
The most important member function offered by boost::gregorian::date_duration is days(), which
returns the number of days in the duration specified.
Example 36.4 Specialized durations

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()

173

CHAPTER 36. BOOST.DATETIME 36.1. CALENDAR DATES

{
date_duration dd{4};
std::cout << dd.days() << '\n';
weeks ws{4};
std::cout << ws.days() << '\n';
months ms{4};
std::cout << ms.number_of_months() << '\n';
years ys{4};
std::cout << ys.number_of_years() << '\n';

}

Objects of type boost::gregorian::date_duration can also be created by passing the number of days as
a single parameter to the constructor. To create a duration that involves weeks, months, or years, use boost::
gregorian::weeks, boost::gregorian::months, or boost::gregorian::years (see Example 36.4).
Neither boost::gregorian::months nor boost::gregorian::years will allow you to determine the
number of days, because months and years vary in length. Nonetheless, using these classes can still make sense,
as shown in Example 36.5.
Example 36.5 Processing specialized durations

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()
{

date d{2014, 1, 31};
months ms{1};
date d2 = d + ms;
std::cout << d2 << '\n';
date d3 = d2 - ms;
std::cout << d3 << '\n';

}

Example 36.5 adds one month to the given date of January 31, 2014, which results in d2 being February 28,
2014. In the next step, one month is subtracted and d3 becomes January 31, 2014, again. As shown, points in
time as well as durations can be used in calculations. However, some specifics need to be taken into account. For
example, starting at the last day of a month, boost::gregorian::months always arrives at the last day of an-
other month, which can lead to surprises.
Example 36.6 Surprises when processing specialized durations

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()
{

date d{2014, 1, 30};
months ms{1};
date d2 = d + ms;
std::cout << d2 << '\n';
date d3 = d2 - ms;
std::cout << d3 << '\n';

}

Example 36.6 is identical to the previous one, except d is initialized to be January 30, 2014. Even though this is
not the last day in January, jumping forward by one month results in d2 becoming February 28, 2014, because
there is no February 30. However, jumping backwards by one month again results in d3 becoming January 31,
2014. Since February 28, 2014, is the last day in February, jumping backwards returns to the last day in January.
To change this behavior, undefine the macro BOOST_DATE_TIME_OPTIONAL_GREGORIAN_TYPES. After this
macro is undefined, the classes boost::gregorian::weeks, boost::gregorian::months, and boost::

174

CHAPTER 36. BOOST.DATETIME 36.1. CALENDAR DATES

gregorian::years will no longer be available. The only class still available will be boost::gregorian::
date_duration, which simply jumps forwards and backwards by a specified number of days and does not give
special consideration to the first and last day of the month.
Example 36.7 Using boost::gregorian::date_period

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()
{

date d1{2014, 1, 1};
date d2{2014, 2, 28};
date_period dp{d1, d2};
date_duration dd = dp.length();
std::cout << dd.days() << '\n';

}

While boost::gregorian::date_duration only works with durations, boost::gregorian::date_per
iod supports ranges between two dates.
The constructor of boost::gregorian::date_period can accept two kinds of input. You can pass two pa-
rameters of type boost::gregorian::date, one for the beginning date and one for the end date. Or you can
specify the beginning date and a duration of type boost::gregorian::date_duration. Please note that the
day before the end date is actually the last day of the period. This is important in order to understand the output
of Example 36.8.
Example 36.8 Testing whether a period contains dates

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::gregorian;

int main()
{

date d1{2014, 1, 1};
date d2{2014, 2, 28};
date_period dp{d1, d2};
std::cout.setf(std::ios::boolalpha);
std::cout << dp.contains(d1) << '\n';
std::cout << dp.contains(d2) << '\n';

}

Example 36.8 checks whether a specific date is within a period by calling contains(). Notice that although
d2 defines the end of the period, it is not considered part of the period. Therefore, the member function conta
ins() will return true when called with d1 and false when called with d2.
boost::gregorian::date_period provides additional member functions for operations such as shifting a
period or calculating the intersection of two overlapping periods.
Boost.DateTime also provides iterators and other useful free-standing functions as shown in Example 36.9.
Use the iterator boost::gregorian::day_iterator to jump forward or backward by a day from a specific
date. Use boost::gregorian::week_iterator, boost::gregorian::month_iterator, and boost::
gregorian::year_iterator to jump by weeks, months, or years, respectively.
Example 36.9 also uses the function boost::date_time::next_weekday(), which returns the date of the
next weekday based on a given date. Example 36.9 displays 2014-May-16, which is the first Friday following
May 13, 2014.
Example 36.9 Iterating over dates

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost;

int main()

175

CHAPTER 36. BOOST.DATETIME 36.2. LOCATION-INDEPENDENT TIMES

{
gregorian::date d{2014, 5, 12};
gregorian::day_iterator it{d};
std::cout << *++it << '\n';
std::cout << date_time::next_weekday(*it,

gregorian::greg_weekday(date_time::Friday)) << '\n';
}

36.2 Location-independent Times
The class boost::posix_time::ptime defines a location-independent time. It uses the type boost::greg
orian::date, but also stores a time. To use boost::posix_time::ptime, include the header file boost/
date_time/posix_time/posix_time.hpp.
Example 36.10 Using boost::posix_time::ptime

#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

ptime pt{date{2014, 5, 12}, time_duration{12, 0, 0}};
date d = pt.date();
std::cout << d << '\n';
time_duration td = pt.time_of_day();
std::cout << td << '\n';

}

To initialize an object of type boost::posix_time::ptime, pass a date of type boost::gregorian::date
and a duration of type boost::posix_time::time_duration as the first and second parameters to the con-
structor. The constructor of boost::posix_time::time_duration takes three parameters, which determine
the time. Example 36.10 specifies 12 PM on May 12, 2014, as the point in time. To query date and time, use the
member functions date() and time_of_day().
Just as the default constructor of boost::gregorian::date creates an invalid date, the default constructor of
boost::posix_time::ptime creates an invalid time. An invalid time can also be created explicitly by passing
boost::date_time::not_a_date_time to the constructor. Boost.DateTime provides free-standing functions
and member functions to create times that are analogous to those used to create calendar dates of type boost::
gregorian::date.
Example 36.11 Creating a timepoint with a clock or a string

#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>

using namespace boost::posix_time;

int main()
{

ptime pt = second_clock::universal_time();
std::cout << pt.date() << '\n';
std::cout << pt.time_of_day() << '\n';

pt = from_iso_string("20140512T120000");
std::cout << pt.date() << '\n';
std::cout << pt.time_of_day() << '\n';

}

176

CHAPTER 36. BOOST.DATETIME 36.2. LOCATION-INDEPENDENT TIMES

The class boost::posix_time::second_clock returns the current time. The member function universal_
time() returns the UTC time (see Example 36.11). local_time() returns the local time. If you need a higher
resolution, boost::posix_time::microsec_clock returns the current time including microseconds.
The free-standing function boost::posix_time::from_iso_string() converts a time stored in a string
formatted using the ISO 8601 standard into an object of type boost::posix_time::ptime.
Example 36.12 Using boost::posix_time::time_duration

#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>

using namespace boost::posix_time;

int main()
{

time_duration td{16, 30, 0};
std::cout << td.hours() << '\n';
std::cout << td.minutes() << '\n';
std::cout << td.seconds() << '\n';
std::cout << td.total_seconds() << '\n';

}

Boost.DateTime also provides the class boost::posix_time::time_duration, which specifies a duration.
This class has been mentioned before because the constructor of boost::posix_time::ptime expects an
object of type boost::posix_time::time_duration as its second parameter. You can also use boost::
posix_time::time_duration independently.
hours(), minutes(), and seconds() return the respective parts of a time duration, while member functions
such as total_seconds(), which returns the total number of seconds, provide additional information (see Ex-
ample 36.12). There is no upper limit, such as 24 hours, to the values you can legally pass to boost::posix_t
ime::time_duration.
Example 36.13 Processing timepoints
#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>

using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

ptime pt1{date{2014, 5, 12}, time_duration{12, 0, 0}};
ptime pt2{date{2014, 5, 12}, time_duration{18, 30, 0}};
time_duration td = pt2 - pt1;
std::cout << td.hours() << '\n';
std::cout << td.minutes() << '\n';
std::cout << td.seconds() << '\n';

}

As with calendar dates, calculations can be performed with points in time and durations. If two times of type
boost::posix_time::ptime are subtracted from each other, as in Example 36.13, the result is an object of
type boost::posix_time::time_duration that specifies the duration between the two times.
Example 36.14 Processing time durations
#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>

using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

ptime pt1{date{2014, 5, 12}, time_duration{12, 0, 0}};
time_duration td{6, 30, 0};
ptime pt2 = pt1 + td;
std::cout << pt2.time_of_day() << '\n';

177

CHAPTER 36. BOOST.DATETIME 36.3. LOCATION-DEPENDENT TIMES

}

As shown in Example 36.14, a duration can be added to a time, resulting in a new point in time. This example
writes 18:30:00 to the standard output stream.
Boost.DateTime uses the same concepts for calendar dates and times. Just as there are classes for times and
durations, there is also one for periods. For calendar dates, this is boost::gregorian::date_period; for
times it is boost::posix_time::time_period. The constructors of both classes expect two parameters:
boost::gregorian::date_period expects two calendar dates as parameters and boost::posix_time:
:time_period expects two points in time.
Example 36.15 Using boost::posix_time::time_period

#include <boost/date_time/posix_time/posix_time.hpp>
#include <iostream>

using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

ptime pt1{date{2014, 5, 12}, time_duration{12, 0, 0}};
ptime pt2{date{2014, 5, 12}, time_duration{18, 30, 0}};
time_period tp{pt1, pt2};
std::cout.setf(std::ios::boolalpha);
std::cout << tp.contains(pt1) << '\n';
std::cout << tp.contains(pt2) << '\n';

}

In general, boost::posix_time::time_period works just like boost::gregorian::date_period. It
provides a member function, contains(), which returns true for every point in time within the period. Be-
cause the end time, which is passed to the constructor of boost::posix_time::time_period, is not part of
the period, the second call to contains() in Example 36.15 returns false.
boost::posix_time::time_period provides additional member functions such as intersection() and
merge(), which respectively, calculate the intersection of two overlapping periods and merge two intersecting
periods.
Finally, the iterator boost::posix_time::time_iterator iterates over points in time.
Example 36.16 uses the iterator it to jump forward 6.5 hours from the time pt. Because the iterator is incre-
mented twice, the output is 2014-May-12 18:30:00 and 2014-May-13 01:00:00.
Example 36.16 Iterating over points in time

#include <boost/date_time/local_time/local_time.hpp>
#include <iostream>

using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

ptime pt{date{2014, 5, 12}, time_duration{12, 0, 0}};
time_iterator it{pt, time_duration{6, 30, 0}};
std::cout << *++it << '\n';
std::cout << *++it << '\n';

}

36.3 Location-dependent Times
Unlike the location-independent times introduced in the previous section, location-dependent times account for
time zones. Boost.DateTime provides the class boost::local_time::local_date_time, which is defined
in boost/date_time/local_time/local_time.hpp. This class stores time-zone related data using
boost::local_time::posix_time_zone.

178

CHAPTER 36. BOOST.DATETIME 36.3. LOCATION-DEPENDENT TIMES

Example 36.17 Using boost::local_time::local_date_time

#include <boost/date_time/local_time/local_time.hpp>
#include <iostream>

using namespace boost::local_time;
using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

time_zone_ptr tz{new posix_time_zone{"CET+1"}};
ptime pt{date{2014, 5, 12}, time_duration{12, 0, 0}};
local_date_time dt{pt, tz};
std::cout << dt.utc_time() << '\n';
std::cout << dt << '\n';
std::cout << dt.local_time() << '\n';
std::cout << dt.zone_name() << '\n';

}

The constructor of boost::local_time::local_date_time expects its first parameter to be an object of
type boost::posix_time::ptime and its second parameter to be an object of type boost::local_time::time_zone_ptr.
boost::local_time::time_zone_ptr is a type definition for boost::shared_ptr<boost::local_time::time_zone>. The
type definition is based on boost::local_time::time_zone, not boost::local_time::posix_time_z
one. That’s fine because boost::local_time::posix_time_zone is derived from boost::local_time::
time_zone. This makes it possible to extend Boost.DateTime with user-defined types for time zones.
No object of type boost::local_time::posix_time_zone is passed. Instead, a smart pointer referring to
the object is passed. This allows multiple objects of type boost::local_time::local_date_time to share
time-zone data. When the last object is destroyed, the object representing the time zone will automatically be
released.
To create an object of type boost::local_time::posix_time_zone, a string describing the time zone is
passed to the constructor as the only parameter. Example 36.17 specifies Central Europe as the time zone (CET is
the abbreviation for Central European Time). Since CET is one hour ahead of UTC, the deviation is represented
as +1. Boost.DateTime is not able to interpret abbreviations for time zones and thus does not know the meaning
of CET. Therefore, the deviation must always be provided in hours; use the value +0 if there is no deviation.
The program writes the strings 2014-May-12 12:00:00, 2014-May-12 13:00:00 CET, 2014-May-12 13:
00:00, and CET to the standard output stream. Values used to initialize objects of type boost::posix_time::
ptime and boost::local_time::local_date_time always relate to the UTC time zone by default. When
an object of type boost::local_time::local_date_time is written to the standard output stream or a call
to the member function local_time() is made, the deviation in hours is used to calculate the local time.
Example 36.18 Location-dependent points in time and different time zones

#include <boost/date_time/local_time/local_time.hpp>
#include <iostream>

using namespace boost::local_time;
using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

time_zone_ptr tz{new posix_time_zone{"CET+1"}};

ptime pt{date{2014, 5, 12}, time_duration{12, 0, 0}};
local_date_time dt{pt, tz};
std::cout << dt.local_time() << '\n';

time_zone_ptr tz2{new posix_time_zone{"EET+2"}};
std::cout << dt.local_time_in(tz2).local_time() << '\n';

}

179

CHAPTER 36. BOOST.DATETIME 36.4. FORMATTED INPUT AND OUTPUT

With local_time(), the deviation for the time zone is respected. In order to calculate the CET time, one hour
needs to be added to the UTC time of 12 PM stored in dt, since CET is one hour ahead of UTC. That’s why loc
al_time() writes 2014-May-12 13:00:00 to standard output in Example 36.18.
In contrast, the member function local_time_in() interprets the time stored in dt as being in the time zone
that is passed as a parameter. This means that 12 PM UTC equals 2 PM EET which stands for Eastern European
Time and is two hours ahead of UTC.
Finally, Boost.DateTime provides the class boost::local_time::local_time_period for location-dependent
periods.
Example 36.19 Using boost::local_time::local_time_period

#include <boost/date_time/local_time/local_time.hpp>
#include <iostream>

using namespace boost::local_time;
using namespace boost::posix_time;
using namespace boost::gregorian;

int main()
{

time_zone_ptr tz{new posix_time_zone{"CET+0"}};

ptime pt1{date{2014, 12, 5}, time_duration{12, 0, 0}};
local_date_time dt1{pt1, tz};

ptime pt2{date{2014, 12, 5}, time_duration{18, 0, 0}};
local_date_time dt2{pt2, tz};

local_time_period tp{dt1, dt2};

std::cout.setf(std::ios::boolalpha);
std::cout << tp.contains(dt1) << '\n';
std::cout << tp.contains(dt2) << '\n';

}

The constructor of boost::local_time::local_time_period in Example 36.19 expects two parameters
of type boost::local_time::local_date_time. As with other types provided for periods, the second pa-
rameter, which represents the end time, is not part of the period. With the help of member functions such as con
tains(), intersection(), merge(), and others, you can process periods based on boost::local_time::
local_time_period.

36.4 Formatted Input and Output
The sample programs described so far in this chapter write results in the format 2014-May-12. Boost.DateTime
lets you display results in different formats. Calendar dates and times can be formatted using boost::date_t
ime::date_facet and boost::date_time::time_facet.
Boost.DateTime uses the concept of locales from the standard. To format a calendar date, an object of type boost:
:date_time::date_facet must be created and installed within a locale. A string describing the new format is
passed to the constructor of boost::date_time::date_facet. Example 36.20 passes “%A, %d %B %Y”,
which specifies that the day of the week is followed by the date with the month written in full: Monday, 12
May 2014.
Example 36.20 A user-defined format for a date

#include <boost/date_time/gregorian/gregorian.hpp>
#include <iostream>
#include <locale>

using namespace boost::gregorian;

int main()
{

date d{2014, 5, 12};

180

CHAPTER 36. BOOST.DATETIME 36.4. FORMATTED INPUT AND OUTPUT

date_facet *df = new date_facet{"%A, %d %B %Y"};
std::cout.imbue(std::locale{std::cout.getloc(), df});
std::cout << d << '\n';

}

Boost.DateTime provides numerous format flags, each of which consists of the percent sign followed by a char-
acter. The documentation for Boost.DateTime contains a complete overview of all supported flags.
If a program is used by people located in Germany or German-speaking countries, it is preferable to display both
the weekday and the month in German rather than in English.
The names for weekdays and months can be changed by passing vectors containing the desired names to the
member functions long_month_names() and long_weekday_names() of the class boost::date_time:
:date_facet. Example 36.21 now writes Montag, 12.Mai 2014 to the standard output stream.

Note

To run the example on a POSIX operating system, replace “German” with “de_DE” and
make sure the locale for German is installed.

Example 36.21 Changing names of weekdays and months

#include <boost/date_time/gregorian/gregorian.hpp>
#include <string>
#include <vector>
#include <locale>
#include <iostream>

using namespace boost::gregorian;

int main()
{

std::locale::global(std::locale{"German"});
std::string months[12]{"Januar", "Februar", "M\xe4rz", "April",

"Mai", "Juni", "Juli", "August", "September", "Oktober",
"November", "Dezember"};

std::string weekdays[7]{"Sonntag", "Montag", "Dienstag",
"Mittwoch", "Donnerstag", "Freitag", "Samstag"};

date d{2014, 5, 12};
date_facet *df = new date_facet{"%A, %d. %B %Y"};
df->long_month_names(std::vector<std::string>{months, months + 12});
df->long_weekday_names(std::vector<std::string>{weekdays,

weekdays + 7});
std::cout.imbue(std::locale{std::cout.getloc(), df});
std::cout << d << '\n';

}

Boost.DateTime is flexible with regard to formatted input and output. Besides the output classes boost::date
_time::date_facet and boost::date_time::time_facet, the classes boost::date_time::date_in
put_facet and boost::date_time::time_input_facet are available for formatted input. All four classes
provide member functions to configure the input and output of different objects provided by Boost.DateTime.
For example, it is possible to specify how periods of type boost::gregorian::date_period are input and
output. To see all of the possibilities for formatted input and output, review the documentation for Boost.DateTime.

181

http://www.boost.org/doc/html/date_time/date_time_io.html#date_time.format_flags

Chapter 37

Boost.Chrono

The library Boost.Chrono provides a variety of clocks. For example, you can get the current time or you can
measure the time passed in a process.
Parts of Boost.Chrono were added to C++11. If your development environment supports C++11, you have ac-
cess to several clocks defined in the header file chrono. However, C++11 doesn’t support some features, for
example clocks to measure CPU time. Furthermore, only Boost.Chrono supports user-defined output formats for
time.
You have access to all Boost.Chrono clocks through the header file boost/chrono.hpp. The only extension
is user-defined formatting, which requires the header file boost/chrono_io.hpp.
Example 37.1 introduces all of the clocks provided by Boost.Chrono. All clocks have in common the member
function now(), which returns a timepoint. All timepoints are relative to a universally valid timepoint. This ref-
erence timepoint is called epoch. An often used epoch is 1 January 1970. Example 37.1 writes the epoch for ev-
ery timepoint displayed.
Example 37.1 All clocks from Boost.Chrono

#include <boost/chrono.hpp>
#include <iostream>

using namespace boost::chrono;

int main()
{

std::cout << system_clock::now() << '\n';
#ifdef BOOST_CHRONO_HAS_CLOCK_STEADY

std::cout << steady_clock::now() << '\n';
#endif

std::cout << high_resolution_clock::now() << '\n';

#ifdef BOOST_CHRONO_HAS_PROCESS_CLOCKS
std::cout << process_real_cpu_clock::now() << '\n';
std::cout << process_user_cpu_clock::now() << '\n';
std::cout << process_system_cpu_clock::now() << '\n';
std::cout << process_cpu_clock::now() << '\n';

#endif

#ifdef BOOST_CHRONO_HAS_THREAD_CLOCK
std::cout << thread_clock::now() << '\n';

#endif
}

Boost.Chrono includes the following clocks:

• boost::chrono::system_clock returns the system time. This is the time usually displayed on the
desktop of your computer. If you change the time on your computer, boost::chrono::system_clock
returns the new time. Example 37.1 writes a string to standard output that looks like the following: 13919
594042183544 [1/10000000]seconds since Jan 1, 1970.
The epoch isn’t standardized for boost::chrono::system_clock. The epoch 1 January 1970, which

182

http://www.boost.org/libs/chrono

CHAPTER 37. BOOST.CHRONO

is used in these examples, is implementation dependent. However, if you specifically want to get the time
since 1 January 1970, call to_time_t(). to_time_t() is a static member function that returns the cur-
rent system time as the number of seconds since 1 January 1970 as a std::time_t.

• boost::chrono::steady_clock is a clock that will always return a later time when it is accessed later.
Even if the time is set back on a computer, boost::chrono::steady_clock will return a later time.
This time is known as monotonic time. Example 37.1 displays the number of nanoseconds since the sys-
tem was booted. The message looks like the following: 10594369282958 nanoseconds since boot.
boost::chrono::steady_clock measures the time elapsed since the last boot. However, starting the
measurement since the last boot is an implementation detail. The reference point could change with a dif-
ferent implementation.
boost::chrono::steady_clock isn’t supported on all platforms. The clock is only available if the
macro BOOST_CHRONO_HAS_CLOCK_STEADY is defined.

• boost::chrono::high_resolution_clock is a type definition for boost::chrono::system_c
lock or boost::chrono::steady_clock, depending on which clock measures time more precisely.
Thus, the output is identical to the output of the clock boost::chrono::high_resolution_clock is
based on.

• boost::chrono::process_real_cpu_clock returns the CPU time a process has been running. The
clock measures the time since program start. Example 37.1 writes a string to standard output that looks like
the following: 1000000 nanoseconds since process start-up.
You could also get this time using std::clock() from ctime. In fact, the current implementation of
boost::chrono::process_real_cpu_clock is based on std::clock().
The boost::chrono::process_real_cpu_clock clock and other clocks measuring CPU time can
only be used if the macro BOOST_CHRONO_HAS_PROCESS_CLOCKS is defined.

• boost::chrono::process_user_cpu_clock returns the CPU time a process spent in user space. User
space refers to code that runs separately from operating system functions. The time it takes to execute code
in operating system functions called by a program is not counted as user space time.
boost::chrono::process_user_cpu_clock returns only the time spent running in user space. If
a program is halted for a while, for example through the Windows Sleep() function, the time spent in
Sleep() isn’t measured by boost::chrono::process_user_cpu_clock.
Example 37.1 writes a string to standard output that looks like the following: 15600100 nanoseconds
since process start-up.

• boost::chrono::process_system_cpu_clock is similar to boost::chrono::process_user_cp
u_clock. However, this clock measures the time spent in kernel space. boost::chrono::process_sy
stem_cpu_clock returns the CPU time a process spends executing operating system functions.
Example 37.1 writes a string to the standard output that looks like the following: 0 nanoseconds since
process start-up. Because this example doesn’t call operating system functions directly and because
Boost.Chrono uses only a few operating system functions, boost::chrono::process_system_cpu_cl
ock may return 0.

• boost::chrono::process_cpu_clock returns a tuple with the CPU times which are returned by boost:
:chrono::process_real_cpu_clock, boost::chrono::process_user_cpu_clock and boost::
chrono::process_system_cpu_clock. Example 37.1 writes a string to standard output that looks like
the following: {1000000;15600100;0} nanoseconds since process start-up.

• boost::chrono::thread_clock returns the time used by a thread. The time measured by boost::
chrono::thread_clock is comparable to CPU time, except it is per thread, rather than per process.
boost::chrono::thread_clock returns the CPU time the thread has been running. It does not dis-
tinguish between time spent in user and kernel space.
boost::chrono::thread_clock isn’t supported on all platforms. You can only use boost::chrono:
:thread_clock if the macro BOOST_CHRONO_HAS_THREAD_CLOCK is defined.
Boost.Chrono provides the macro, BOOST_CHRONO_THREAD_CLOCK_IS_STEADY, to detect whether boost:
:chrono::thread_clock measures monotonic time like boost::chrono::steady_clock.
Example 37.1 writes a string to standard output that looks like the following: 15600100 nanoseconds
since thread start-up.

183

CHAPTER 37. BOOST.CHRONO

All of the clocks in Boost.Chrono depend on operating system functions; thus, the operating system determines
how precise and reliable the returned times are.
Example 37.2 Adding and subtracting durations using Boost.Chrono

#include <boost/chrono.hpp>
#include <iostream>

using namespace boost::chrono;

int main()
{

process_real_cpu_clock::time_point p = process_real_cpu_clock::now();
std::cout << p << '\n';
std::cout << p - nanoseconds{1} << '\n';
std::cout << p + milliseconds{1} << '\n';
std::cout << p + seconds{1} << '\n';
std::cout << p + minutes{1} << '\n';
std::cout << p + hours{1} << '\n';

}

now() returns an object of type boost::chrono::time_point for all clocks. This type is tightly coupled with
a clock because the timepoint is measured relative to a reference timepoint that is defined by a clock. boost::
chrono::time_point is a template that expects the type of a clock as a parameter. Each clock type provides a
type definition for its specialized boost::chrono::time_point. For example, the type definition for proces
s_real_cpu_clock is process_real_cpu_clock::time_point.
Boost.Chrono also provides the class boost::chrono::duration, which describes durations. Because boost:
:chrono::duration is also a template, Boost.Chrono provides the six classes boost::chrono::nanoseco
nds, boost::chrono::milliseconds, boost::chrono::microseconds, boost::chrono::seconds,
boost::chrono::minutes, and boost::chrono::hours, which are easier to use.
Boost.Chrono overloads several operators to process timepoints and durations. Example 37.2 subtracts durations
from or adds durations to p to get new timepoints, which are written to standard output.
Example 37.2 displays all timepoints in nanoseconds. Boost.Chrono automatically uses the smallest unit when
timepoints and durations are processed to make sure that results are as precise as possible. If you want to use a
timepoint with another unit, you have to cast it.
Example 37.3 Casting timepoints with boost::chrono::time_point_cast()

#include <boost/chrono.hpp>
#include <iostream>

using namespace boost::chrono;

int main()
{

process_real_cpu_clock::time_point p = process_real_cpu_clock::now();
std::cout << p << '\n';
std::cout << time_point_cast<minutes>(p) << '\n';

}

The boost::chrono::time_point_cast() function is used like a cast operator. Example 37.3 uses boost:
:chrono::time_point_cast() to convert a timepoint based on nanoseconds to a timepoint in minutes. You
must use boost::chrono::time_point_cast() in this case because the timepoint cannot be expressed in a
less precise unit (minutes) without potentially losing precision. You don’t require boost::chrono::time_poi
nt_cast() to convert from less precise to more precise units.
Boost.Chrono also provides cast operators for durations.
Example 37.4 Casting durations with boost::chrono::duration_cast()

#include <boost/chrono.hpp>
#include <iostream>

using namespace boost::chrono;

int main()
{

184

CHAPTER 37. BOOST.CHRONO

minutes m{1};
seconds s{35};

std::cout << m + s << '\n';
std::cout << duration_cast<minutes>(m + s) << '\n';

}

Example 37.4 uses the function boost::chrono::duration_cast() to cast a duration from seconds to min-
utes. This example writes 1 minute to standard output.
Example 37.5 Rounding durations
#include <boost/chrono.hpp>
#include <iostream>

using namespace boost::chrono;

int main()
{

std::cout << floor<minutes>(minutes{1} + seconds{45}) << '\n';
std::cout << round<minutes>(minutes{1} + seconds{15}) << '\n';
std::cout << ceil<minutes>(minutes{1} + seconds{15}) << '\n';

}

Boost.Chrono also provides functions to round durations when casting. boost::chrono::round() rounds
up or down, boost::chrono::floor() rounds down, and boost::chrono::ceil() rounds up. boost:
:chrono::floor() uses boost::chrono::duration_cast() – there is no difference between these two
functions.
Example 37.5 writes 1 minute, 1 minute, and 2 minutes to standard output.
Example 37.6 Stream manipulators for user-defined output
#define BOOST_CHRONO_VERSION 2
#include <boost/chrono.hpp>
#include <boost/chrono/chrono_io.hpp>
#include <iostream>

using namespace boost::chrono;

int main()
{

std::cout << symbol_format << minutes{10} << '\n';

std::cout << time_fmt(boost::chrono::timezone::local, "%H:%M:%S") <<
system_clock::now() << '\n';

}

Boost.Chrono provides various stream manipulators to format the output of timepoints and durations. For exam-
ple, with the manipulator boost::chrono::symbol_format(), the time unit is written as a symbol instead of
a name. Thus, Example 37.6 displays 10 min.
The manipulator boost::chrono::time_fmt() can be used to set a timezone and a format string. The time-
zone must be set to boost::chrono::timezone::local or boost::chrono::timezone::utc. The for-
mat string can use flags to refer to various components of a timepoint. For example, Example 37.6 writes a string
to the standard output that looks like the following: 15:46:44.
Beside stream manipulators, Boost.Chrono provides facets for many different customizations. For example, there
is a facet that makes it possible to output timepoints in another language.

Note

There are two versions of the input/output functions since Boost 1.52.0. Since Boost
1.55.0, the newer version is used by default. If you use a version older than 1.55.0, you
must define the macro BOOST_CHRONO_VERSION and set it to 2 for Example 37.6 to work.

185

Chapter 38

Boost.Timer

Boost.Timer provides clocks to measure code performance. At first, it may seem like this library competes with
Boost.Chrono. However, while Boost.Chrono provides clocks to measure arbitrary periods, Boost.Timer mea-
sures the time it takes to execute code. Although Boost.Timer uses Boost.Chrono, when you want to measure
code performance, you should use Boost.Timer rather than Boost.Chrono.
Since version 1.48.0 of the Boost libraries, there have been two versions of Boost.Timer. The first version of
Boost.Timer has only one header file: boost/timer/timer.hpp. Do not use this header file. It belongs
to the first version of Boost.Timer, which shouldn’t be used anymore.
The clocks provided by Boost.Timer are implemented in the classes boost::timer::cpu_timer and boost:
:timer::auto_cpu_timer. boost::timer::auto_cpu_timer is derived from boost::timer::cpu_ti
mer and automatically stops the time in the destructor. It then writes the time to an output stream.
Example 38.1 starts by introducing the class boost::timer::cpu_timer. This example and the following
examples do some calculations to make sure enough time elapses to be measurable. Otherwise the timers would
always measure 0, and it would be difficult to introduce the clocks from this library.
Measurement starts when boost::timer::cpu_timer is instantiated. You can call the member function for
mat() at any point to get the elapsed time. Example 38.1 displays output in the following format: 0.099170s
wall, 0.093601s user + 0.000000s system =0.093601s CPU (94.4%).
Boost.Timer measures wall and CPU time. The wall time is the time which passes according to a wall clock. You
could measure this time yourself with a stop watch. The CPU time says how much time the program spent exe-
cuting code. On today’s multitasking systems a processor isn’t available for a program all the time. A program
may also need to halt and wait for user input. In these cases the wall time moves on but not the CPU time.
Example 38.1 Measuring time with boost::timer::cpu_timer

#include <boost/timer/timer.hpp>
#include <iostream>
#include <cmath>

using namespace boost::timer;

int main()
{

cpu_timer timer;

for (int i = 0; i < 1000000; ++i)
std::pow(1.234, i);

std::cout << timer.format() << '\n';
}

CPU time is divided between time spent in user space and time spent in kernel space. Kernel space refers to code
that is part of the operating system. User space is code that doesn’t belong to the operating system. User space
includes your program code and code from third-party libraries. For example, the Boost libraries are included in
user space. The amount of time spent in kernel space depends on the operating system functions called and how
much time those functions need.
Example 38.2 Stopping and resuming timers

#include <boost/timer/timer.hpp>
#include <iostream>

186

http://www.boost.org/libs/timer

CHAPTER 38. BOOST.TIMER

#include <cmath>

using namespace boost::timer;

int main()
{

cpu_timer timer;

for (int i = 0; i < 1000000; ++i)
std::pow(1.234, i);

std::cout << timer.format() << '\n';

timer.stop();

for (int i = 0; i < 1000000; ++i)
std::pow(1.234, i);

std::cout << timer.format() << '\n';

timer.resume();

for (int i = 0; i < 1000000; ++i)
std::pow(1.234, i);

std::cout << timer.format() << '\n';
}

boost::timer::cpu_timer provides the member functions stop() and resume(), which stop and resume
timers. In Example 38.2, the timer is stopped before the second for loop runs and resumed afterwards. Thus, the
second for loop isn’t measured. This is similar to a stop watch that is stopped and then resumed after a while.
The time returned by the second call to format() in Example 38.2 is the same as if the second for loop didn’t
exist.
boost::timer::cpu_timer also provides a member function start(). If you call start(), instead of res
ume(), the timer restarts from zero. The constructor of boost::timer::cpu_timer calls start(), which is
why the timer starts immediately when boost::timer::cpu_timer is instantiated.
Example 38.3 Getting wall and CPU time as a tuple

#include <boost/timer/timer.hpp>
#include <iostream>
#include <cmath>

using namespace boost::timer;

int main()
{

cpu_timer timer;

for (int i = 0; i < 1000000; ++i)
std::pow(1.234, i);

cpu_times times = timer.elapsed();
std::cout << times.wall << '\n';
std::cout << times.user << '\n';
std::cout << times.system << '\n';

}

While format() returns the measured wall and CPU time as a string, it is also possible to receive the times in
a tuple (see Example 38.3). boost::timer::cpu_timer provides the member function elapsed() for that.
elapsed() returns a tuple of type boost::timer::times. This tuple has three member variables: wall,
user, and system. These member variables contain the wall and CPU times in nanoseconds. Their type is boost::int_least64_t.
boost::timer::times provides the member function clear() to set wall, user, and system to 0.
Example 38.4 Measuring times automatically with boost::timer::auto_cpu_timer

#include <boost/timer/timer.hpp>
#include <cmath>

187

CHAPTER 38. BOOST.TIMER

using namespace boost::timer;

int main()
{

auto_cpu_timer timer;

for (int i = 0; i < 1000000; ++i)
std::pow(1.234, i);

}

You can measure the wall and CPU time of a code block with boost::timer::auto_cpu_timer. Because
the destructor of this class stops measuring time and writes the time to the standard output stream, Example 38.4
does the same thing as Example 38.1.
boost::timer::auto_cpu_timer provides several constructors. For example, you can pass an output stream
that will be used to display the time. By default, the output stream is std::cout.
You can specify the format of reported times for boost::timer::auto_cpu_timer and boost::timer::
cpu_timer. Boost.Timer provides format flags similar to the format flags supported by Boost.Format or std::
printf(). The documentation contains an overview of the format flags.

188

Part IX

Functional Programming

189

In the functional programming model, functions are objects that, like other objects, can be passed as parameters
to functions or stored in containers. There are numerous Boost libraries that support the functional programming
model.

• Boost.Phoenix is the most extensive and, as of today, most important of these libraries. It replaces the li-
brary Boost.Lambda, which is introduced briefly, but only for completeness.

• Boost.Function provides a class that makes it easy to define a function pointer without using the syntax
that originated with the C programming language.

• Boost.Bind is an adapter that lets you pass functions as parameters to other functions even if the actual
signature is different from the expected signature.

• Boost.Ref can be used to pass a reference to an object, even if a function passes the parameter by copy.

• Boost.Lambda could be called a predecessor of Boost.Phoenix. It is a rather old library and allowed using
lambda functions many years before they were added with C++11 to the programming language.

190

Chapter 39

Boost.Phoenix

Boost.Phoenix is the most important Boost library for functional programming. While libraries like Boost.Bind
or Boost.Lambda provide some support for functional programming, Boost.Phoenix includes the features of these
libraries and goes beyond them.
In functional programming, functions are objects and can be processed like objects. With Boost.Phoenix, it is
possible for a function to return another function as a result. It is also possible to pass a function as a parameter
to another function. Because functions are objects, it’s possible to distinguish between instantiation and execu-
tion. Accessing a function isn’t equal to executing it.
Boost.Phoenix supports functional programming with function objects: Functions are objects based on classes
which overload the operator operator(). That way function objects behave like other objects in C++. For ex-
ample, they can be copied and stored in a container. However, they also behave like functions because they can
be called.
Functional programming isn’t new in C++. You can pass a function as a parameter to another function without
using Boost.Phoenix.
Example 39.1 uses the algorithm std::count_if() to count odd numbers in vector v. std::count_if() is
called three times, once with a predicate as a free-standing function, once with a lambda function, and once with
a Phoenix function.
The Phoenix function differs from free-standing and lambda functions because it has no frame. While the other
two functions have a function header with a signature, the Phoenix function seems to consist of a function body
only.
Example 39.1 Predicates as global function, lambda function, and Phoenix function

#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

bool is_odd(int i) { return i % 2 == 1; }

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

std::cout << std::count_if(v.begin(), v.end(), is_odd) << '\n';

auto lambda = [](int i){ return i % 2 == 1; };
std::cout << std::count_if(v.begin(), v.end(), lambda) << '\n';

using namespace boost::phoenix::placeholders;
auto phoenix = arg1 % 2 == 1;
std::cout << std::count_if(v.begin(), v.end(), phoenix) << '\n';

}

The crucial component of the Phoenix function is boost::phoenix::placeholders::arg1. arg1 is a global
instance of a function object. You can use it like std::cout: These objects exist once the respective header file
is included.

191

http://www.boost.org/libs/phoenix

CHAPTER 39. BOOST.PHOENIX

arg1 is used to define an unary function. The expression arg1 % 2 ==1 creates a new function that expects
one parameter. The function isn’t executed immediately but stored in phoenix. phoenix is passed to std::
count_if() which calls the predicate for every number in v.
arg1 is a placeholder for the value passed when the Phoenix function is called. Since only arg1 is used here, a
unary function is created. Boost.Phoenix provides additional placeholders such as boost::phoenix::placeh
olders::arg2 and boost::phoenix::placeholders::arg3. A Phoenix function always expects as many
parameters as the placeholder with the greatest number.
Example 39.1 writes 3 three times to standard output.
Example 39.2 highlights a crucial difference between Phoenix and lambda functions. In addition to requiring no
function header with a parameter list, Phoenix function parameters have no types. The lambda function lambda
expects a parameter of type int. The Phoenix function phoenix will accept any type that the modulo operator
can handle.
Think of Phoenix functions as function templates. Like function templates, Phoenix functions can accept any
type. This makes it possible in Example 39.2 to use phoenix as a predicate for the containers v and v2 even
though they store numbers of different types. If you try to use the predicate lambda with v2, you get a compiler
error.
Example 39.2 Phoenix function versus lambda function
#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

auto lambda = [](int i){ return i % 2 == 1; };
std::cout << std::count_if(v.begin(), v.end(), lambda) << '\n';

std::vector<long> v2;
v2.insert(v2.begin(), v.begin(), v.end());

using namespace boost::phoenix::placeholders;
auto phoenix = arg1 % 2 == 1;
std::cout << std::count_if(v.begin(), v.end(), phoenix) << '\n';
std::cout << std::count_if(v2.begin(), v2.end(), phoenix) << '\n';

}

Example 39.3 uses a Phoenix function as a predicate with std::count_if() to count odd numbers greater than
2. The Phoenix function accesses arg1 twice: Once to test if the placeholder is greater than 2 and once to test
whether it’s an odd number. The conditions are linked with &&.
Example 39.3 Phoenix functions as deferred C++ code
#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

using namespace boost::phoenix::placeholders;
auto phoenix = arg1 > 2 && arg1 % 2 == 1;
std::cout << std::count_if(v.begin(), v.end(), phoenix) << '\n';

}

You can think of Phoenix functions as C++ code that isn’t executed immediately. The Phoenix function in Exam-
ple 39.3 looks like a condition that uses multiple logical and arithmetic operators. However, the condition isn’t
executed immediately. It is only executed when it is accessed from within std::count_if(). The access in
std::count_if() is a normal function call.
Example 39.3 writes 2 to standard output.

192

CHAPTER 39. BOOST.PHOENIX

Example 39.4 Explicit Phoenix types

#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

using namespace boost::phoenix;
using namespace boost::phoenix::placeholders;
auto phoenix = arg1 > val(2) && arg1 % val(2) == val(1);
std::cout << std::count_if(v.begin(), v.end(), phoenix) << '\n';

}

Example 39.4 uses explicit types for all operands in the Phoenix function. Strictly speaking, you don’t see types,
just the helper function boost::phoenix::val(). This function returns a function object initialized with the
values passed to boost::phoenix::val(). The actual type of the function object doesn’t matter. What is im-
portant is that Boost.Phoenix overloads operators like >, &&, % and == for different types. Thus, conditions aren’t
checked immediately. Instead, function objects are combined to create more powerful function objects. Depend-
ing on the operands they may be automatically used as function objects. Otherwise you can call helper functions
like val().
Example 39.5 boost::phoenix::placeholders::arg1 and boost::phoenix::val()

#include <boost/phoenix/phoenix.hpp>
#include <iostream>

int main()
{

using namespace boost::phoenix::placeholders;
std::cout << arg1(1, 2, 3, 4, 5) << '\n';

auto v = boost::phoenix::val(2);
std::cout << v() << '\n';

}

Example 39.5 illustrates how arg1 and val() work. arg1 is an instance of a function object. It can be used
directly and called like a function. You can pass as many parameters as you like – arg1 returns the first one.
val() is a function to create an instance of a function object. The function object is initialized with the value
passed as a parameter. If the instance is accessed like a function, the value is returned.
Example 39.5 writes 1 and 2 to standard output.
Example 39.6 Creating your own Phoenix functions

#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

struct is_odd_impl
{

typedef bool result_type;

template <typename T>
bool operator()(T t) const { return t % 2 == 1; }

};

boost::phoenix::function<is_odd_impl> is_odd;

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

193

CHAPTER 39. BOOST.PHOENIX

using namespace boost::phoenix::placeholders;
std::cout << std::count_if(v.begin(), v.end(), is_odd(arg1)) << '\n';

}

Example 39.6 explains how you can create your own Phoenix function. You pass a function object to the tem-
plate boost::phoenix::function. The example passes the class is_odd_impl. This class overloads the
operator operator(): when an odd number is passed in, the operator returns true. Otherwise, the operator re-
turns false.
Please note that you must define the type result_type. Boost.Phoenix uses it to detect the type of the return value
of the operator operator().
is_odd() is a function you can use like val(). Both functions return a function object. When called, param-
eters are forwarded to the operator operator(). For Example 39.6, this means that std::count_if() still
counts odd numbers.
If you want to transform a free-standing function into a Phoenix function, you can proceed as in Example 39.7.
You don’t necessarily have to define a function object as in the previous example.
You use the macro BOOST_PHOENIX_ADAPT_FUNCTION to turn a free-standing function into a Phoenix func-
tion. Pass the type of the return value, the name of the Phoenix function to define, the name of the free-standing
function, and the number of parameters to the macro.
Example 39.7 Transforming free-standing functions into Phoenix functions

#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

bool is_odd_function(int i) { return i % 2 == 1; }

BOOST_PHOENIX_ADAPT_FUNCTION(bool, is_odd, is_odd_function, 1)

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

using namespace boost::phoenix::placeholders;
std::cout << std::count_if(v.begin(), v.end(), is_odd(arg1)) << '\n';

}

To use a free-standing function as a Phoenix function, you can also use boost::phoenix::bind() as in Ex-
ample 39.8. boost::phoenix::bind() works like std::bind(). The name of the free-standing function is
passed as the first parameter. All further parameters are forwarded to the free-standing function.
Example 39.8 Phoenix functions with boost::phoenix::bind()

#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

bool is_odd(int i) { return i % 2 == 1; }

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

using namespace boost::phoenix;
using namespace boost::phoenix::placeholders;
std::cout << std::count_if(v.begin(), v.end(), bind(is_odd, arg1)) << '\n';

}

194

CHAPTER 39. BOOST.PHOENIX

Tip

Avoid boost::phoenix::bind(). Create your own Phoenix functions. This leads to more
readable code. Especially with complex expressions it’s not helpful having to deal with the
additional details of boost::phoenix::bind().

Example 39.9 Arbitrarily complex Phoenix functions

#include <boost/phoenix/phoenix.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{

std::vector<int> v{1, 2, 3, 4, 5};

using namespace boost::phoenix;
using namespace boost::phoenix::placeholders;
int count = 0;
std::for_each(v.begin(), v.end(), if_(arg1 > 2 && arg1 % 2 == 1)

[
++ref(count)

]);
std::cout << count << '\n';

}

Boost.Phoenix provides some function objects that simulate C++ keywords. For example, you can use the func-
tion boost::phoenix::if_() (see Example 39.9) to create a function object that acts like if and tests a con-
dition. If the condition is true, the code passed to the function object with operator[] will be executed. Of
course, that code also has to be based on function objects. That way, you can create complex Phoenix functions.
Example 39.9 increments count for every odd number greater than 2. To use the increment operator on count,
count is wrapped in a function object using boost::phoenix::ref(). In contrast to boost::phoenix::
val(), no value is copied into the function object. The function object returned by boost::phoenix::ref()
stores a reference – here a reference to count.

Tip

Don’t use Boost.Phoenix to create complex functions. It is better to use lambda functions
from C++11. While Boost.Phoenix comes close to C++ syntax, using keywords like if_ or
code blocks between square brackets doesn’t necessarily improve readability.

195

Chapter 40

Boost.Function

Boost.Function provides a class called boost::function to encapsulate function pointers. It is defined in
boost/function.hpp.
If you work in a development environment supporting C++11, you have access to the class std::function
from the header file functional. In this case you can ignore Boost.Function because boost::function and
std::function are equivalent.
Example 40.1 Using boost::function

#include <boost/function.hpp>
#include <iostream>
#include <cstdlib>
#include <cstring>

int main()
{

boost::function<int(const char*)> f = std::atoi;
std::cout << f("42") << '\n';
f = std::strlen;
std::cout << f("42") << '\n';

}

boost::function makes it possible to define a pointer to a function with a specific signature. Example 40.1
defines a pointer f that can point to functions that expect a parameter of type const char* and return a value of
type int. Once defined, functions with matching signatures can be assigned to the pointer. Example 40.1 first
assigns the function std::atoi() to f before std::strlen() is assigned to f.
Please note that types do not need to match exactly. Even though std::strlen() uses std::size_t as its return
type, it can still be assigned to f.
Because f is a function pointer, the assigned function can be called using operator(). Depending on what
function is currently assigned, either std::atoi() or std::strlen() is called.
If f is called without having a function assigned, an exception of type boost::bad_function_call is thrown
(see Example 40.2).
Example 40.2 boost::bad_function_call thrown if boost::function is empty
#include <boost/function.hpp>
#include <iostream>

int main()
{

try
{

boost::function<int(const char*)> f;
f("");

}
catch (boost::bad_function_call &ex)
{

std::cerr << ex.what() << '\n';
}

}

196

http://www.boost.org/libs/function

CHAPTER 40. BOOST.FUNCTION

Note that assigning nullptr to a function pointer of type boost::function releases any currently assigned
function. Calling it after it has been released will result in a boost::bad_function_call exception being
thrown. To check whether or not a function pointer is currently assigned to a function, you can use the member
functions empty() or operator bool.
It is also possible to assign class member functions to objects of type boost::function (see Example 40.3).
When calling such a function, the first parameter passed indicates the particular object for which the function is
called. Therefore, the first parameter after the open parenthesis inside the template definition must be a pointer to
that particular class. The remaining parameters denote the signature of the corresponding member function.
Example 40.3 Binding a class member function to boost::function

#include <boost/function.hpp>
#include <functional>
#include <iostream>

struct world
{

void hello(std::ostream &os)
{

os << "Hello, world!\n";
}

};

int main()
{

boost::function<void(world*, std::ostream&)> f = &world::hello;
world w;
f(&w, std::ref(std::cout));

}

197

Chapter 41

Boost.Bind

Boost.Bind is a library that simplifies and generalizes capabilities that originally required std::bind1st() and
std::bind2nd(). These two functions were added to the standard library with C++98 and made it possible to
connect functions even if their signatures aren’t compatible.
Boost.Bind was added to the standard library with C++11. If your development environment supports C++11,
you will find the function std::bind() in the header file functional. Depending on the use case, it may be
better to use lambda functions or Boost.Phoenix than std::bind() or Boost.Bind.
Example 41.1 std::for_each() with a compatible function

#include <vector>
#include <algorithm>
#include <iostream>

void print(int i)
{

std::cout << i << '\n';
}

int main()
{

std::vector<int> v{1, 3, 2};
std::for_each(v.begin(), v.end(), print);

}

The third parameter of std::for_each() is a function or function object that expects a sole parameter. In Ex-
ample 41.1, std::for_each() passes the numbers in the container v as sole parameters, one after another, to
print().
If you need to pass in a function whose signature doesn’t meet the requirements of an algorithm, it gets more
difficult. For example, if you want print() to accept an output stream as an additional parameter, you can no
longer use it as is with std::for_each().
Like Example 41.1, Example 41.2 writes all numbers in v to standard output. However, this time, the output
stream is passed to print() as a parameter. To do this, the function print() is defined as a function object
derived from std::binary_function.
Example 41.2 std::for_each() with std::bind1st()

#include <vector>
#include <algorithm>
#include <functional>
#include <iostream>

class print : public std::binary_function<std::ostream*, int, void>
{
public:

void operator()(std::ostream *os, int i) const
{

*os << i << '\n';
}

};

198

http://www.boost.org/libs/bind

CHAPTER 41. BOOST.BIND

int main()
{

std::vector<int> v{1, 3, 2};
std::for_each(v.begin(), v.end(), std::bind1st(print{}, &std::cout));

}

With Boost.Bind, you don’t need to transform print() from a function to a function object. Instead, you use the
function template boost::bind(), which is defined in boost/bind.hpp.
Example 41.3 uses print() as a function, not as a function object. Because print() expects two parameters,
the function can’t be passed directly to std::for_each(). Instead, boost::bind() is passed to std::for_e
ach() and print() is passed as the first parameter to boost::bind().
Since print() expects two parameters, those two parameters must also be passed to boost::bind(). They are
a pointer to std::cout and _1.
_1 is a placeholder. Boost.Bind defines placeholders from _1 to _9. These placeholders tell boost::bind()
to return a function object that expects as many parameters as the placeholder with the greatest number. If, as in
Example 41.3, only the placeholder _1 is used, boost::bind() returns an unary function object – a function
object that expects a sole parameter. This is required in this case since std::for_each() passes only one pa-
rameter.
Example 41.3 std::for_each() with boost::bind()

#include <boost/bind.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

void print(std::ostream *os, int i)
{

*os << i << '\n';
}

int main()
{

std::vector<int> v{1, 3, 2};
std::for_each(v.begin(), v.end(), boost::bind(print, &std::cout, _1));

}

std::for_each() calls a unary function object. The value passed to the function object – a number from the
container v – takes the position of the placeholder _1. boost::bind() takes the number and the pointer to
std::cout and forwards them to print().
Please note that boost::bind(), like std::bind1st() and std::bind2nd(), takes parameters by value. To
prevent the calling program from trying to copy std::cout, print() expects a pointer to a stream. Boost.Ref
provides a function which allows you to pass a parameter by reference.
Example 41.4 illustrates how to define a binary function object with boost::bind(). It uses the algorithm
std::sort(), which expects a binary function as its third parameter.
In Example 41.4, a binary function object is created because the placeholder _2 is used. The algorithm std::
sort() calls this binary function object with two values from the container v and evaluates the return value to
sort the container. The function compare() is defined to sort v in descending order.
Example 41.4 std::sort() with boost::bind()

#include <boost/bind.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

bool compare(int i, int j)
{

return i > j;
}

int main()
{

199

CHAPTER 41. BOOST.BIND

std::vector<int> v{1, 3, 2};
std::sort(v.begin(), v.end(), boost::bind(compare, _1, _2));
for (int i : v)

std::cout << i << '\n';
}

Since compare() is a binary function, it can be passed to std::sort() directly. However, it can still make
sense to use boost::bind() because it lets you change the order of the parameters. For example, you can use
boost::bind() if you want to sort the container in ascending order but don’t want to change compare(). Ex-
ample 41.5 sorts v in ascending order simply by swapping the placeholders: _2 is passed first and _1 second.
Example 41.5 std::sort() with boost::bind() and changed order of placeholders

#include <boost/bind.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

bool compare(int i, int j)
{

return i > j;
}

int main()
{

std::vector<int> v{1, 3, 2};
std::sort(v.begin(), v.end(), boost::bind(compare, _2, _1));
for (int i : v)

std::cout << i << '\n';
}

200

Chapter 42

Boost.Ref

The library Boost.Ref provides two functions, boost::ref() and boost::cref(), in the header file boost/
ref.hpp. They are useful if you use, for example, std::bind() for a function which expects parameters by
reference. Because std::bind() takes parameters by value, you have to deal with references explicitly.
Boost.Ref was added to the standard library in C++11, where you will find the functions std::ref() and std:
:cref() in the header file functional.
Example 42.1 Using boost::ref()

#include <boost/ref.hpp>
#include <vector>
#include <algorithm>
#include <functional>
#include <iostream>

void print(std::ostream &os, int i)
{

os << i << std::endl;
}

int main()
{

std::vector<int> v{1, 3, 2};
std::for_each(v.begin(), v.end(),

std::bind(print, boost::ref(std::cout), std::placeholders::_1));
}

In Example 42.1, the function print() is passed to std::for_each() to write the numbers in v to an out-
put stream. Because print() expects two parameters – an output stream and the number to be written – std:
:bind() is used. The first parameter passed to print() through std::bind() is std::cout. However,
print() expects a reference to an output stream, while std::bind() passes parameters by value. Therefore,
boost::ref() is used to wrap std::cout. boost::ref() returns a proxy object that contains a reference
to the object passed to it. This makes it possible to pass a reference to std::cout even though std::bind()
takes all parameters by value.
The function template boost::cref() lets you pass a const reference.

201

http://www.boost.org/doc/html/ref.html

Chapter 43

Boost.Lambda

Before C++11, you needed to use a library like Boost.Lambda to take advantage of lambda functions. Since
C++11, this library can be regarded as deprecated because lambda functions are now part of the programming
language. If you work in a development environment that doesn’t support C++11, you should consider Boost.Phoenix
before you turn to Boost.Lambda. Boost.Phoenix is a newer library and probably the better choice if you need to
use lambda functions without C++11.
The purpose of lambda functions is to make code more compact and easier to understand (see Example 43.1).
Example 43.1 std::for_each() with a lambda function

#include <boost/lambda/lambda.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{

std::vector<int> v{1, 3, 2};
std::for_each(v.begin(), v.end(),

std::cout << boost::lambda::_1 << "\n");
}

Boost.Lambda provides several helpers to create nameless functions. Code is written where it should be exe-
cuted, without needing to be wrapped in a function and without having to call a function explicitly. In Exam-
ple 43.1, std::cout << boost::lambda::_1 << "\n" is a lambda function that expects one parameter,
which it writes, followed by a new line, to standard output.
boost::lambda::_1 is a placeholder that creates a lambda function that expects one parameter. The number in
the placeholder determines the number of expected parameters, so boost::lambda::_2 expects two parame-
ters and boost::lambda::_3 expects three parameters. Boost.Lambda only provides these three placeholders.
The lambda function in Example 43.1 uses boost::lambda::_1 because std::for_each() expects a unary
function.
Include boost/lambda/lambda.hpp to use placeholders.
Please note that \n, instead of std::endl, is used in Example 43.1 to output a new line. If you use std::endl,
the example won’t compile because the type of the lambda function std::cout << boost::lambda::_1
differs from what the unary function template std::endl() expects. Thus, you can’t use std::endl.
Example 43.2 A lambda function with boost::lambda::if_then()

#include <boost/lambda/lambda.hpp>
#include <boost/lambda/if.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

int main()
{

std::vector<int> v{1, 3, 2};
std::for_each(v.begin(), v.end(),

boost::lambda::if_then(boost::lambda::_1 > 1,

202

http://www.boost.org/libs/lambda

CHAPTER 43. BOOST.LAMBDA

std::cout << boost::lambda::_1 << "\n"));
}

The header file boost/lambda/if.hpp defines constructs you can use to create if control structures in a
lambda function. The simplest construct is the function template boost::lambda::if_then(), which expects
two parameters: the first parameter is a condition. If the condition is true, the second parameter is executed. Both
parameters can be lambda functions, as in Example 43.2.
In addition to boost::lambda::if_then(), Boost.Lambda provides the function templates boost::lam
bda::if_then_else() and boost::lambda::if_then_else_return(), both of which expect three pa-
rameters. Function templates are also provided for loops and cast operators and to throw exceptions in lambda
functions. The many function templates defined by Boost.Lambda make it possible to define lambda functions
that are in no way inferior to normal C++ functions.

203

Part X

Parallel Programming

204

The following libraries support the parallel programming model.

• Boost.Thread lets you create and manage your own threads.

• Boost.Atomic lets you access variables of integral types with atomic operations from multiple threads.

• Boost.Lockfree provides thread-safe containers.

• Boost.MPI originates from the supercomputer domain. With Boost.MPI your program is started multiple
times and executed in multiple processes. You concentrate on programming the actual tasks that should be
executed concurrently, and Boost.MPI coordinates the processes. With Boost.MPI you don’t need to take
care of details like synchronizing access on shared data. However, Boost.MPI does require an appropriate
runtime environment.

205

Chapter 44

Boost.Thread

Boost.Thread is the library that allows you to use threads. Furthermore, it provides classes to synchronize access
on data which is shared by multiple threads.
Threads have been supported by the standard library since C++11. You will also find classes in the standard li-
brary that threads can be created and synchronized with. While Boost.Thread resembles the standard library in
many regards, it offers extensions. For example, you can interrupt threads created with Boost.Thread. You will
also find special locks in Boost.Thread that will probably be added to the standard library with C++14. Thus, it
can make sense to use Boost.Thread even if you work in a C++11 development environment.

44.1 Creating and Managing Threads
The most important class in this library is boost::thread, which is defined in boost/thread.hpp. This
class is used to create a new thread. Example 44.1 is a simple example that creates a thread.
The name of the function that the new thread should execute is passed to the constructor of boost::thread.
Once the variable t in Example 44.1 is created, the function thread() starts immediately executing in its own
thread. At this point, thread() executes concurrently with the main() function.
To keep the program from terminating, join() is called on the newly created thread. join() blocks the current
thread until the thread for which join() was called has terminated. This causes main() to wait until thread()
returns.
Example 44.1 Using boost::thread

#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

void thread()
{

for (int i = 0; i < 5; ++i)
{

wait(1);
std::cout << i << '\n';

}
}

int main()
{

boost::thread t{thread};
t.join();

}

206

http://www.boost.org/libs/thread

CHAPTER 44. BOOST.THREAD 44.1. CREATING AND MANAGING THREADS

A particular thread can be accessed using a variable – t in this example – to wait for its termination. However,
the thread will continue to execute even if t goes out of scope and is destroyed. A thread is always bound to a
variable of type boost::thread in the beginning, but once created, the thread no longer depends on that vari-
able. There is even a member function called detach() that allows a variable of type boost::thread to be
decoupled from its corresponding thread. It’s not possible to call member functions like join() after calling
detach() because the detached variable no longer represents a valid thread.
Anything that can be done inside a function can also be done inside a thread. Ultimately, a thread is no differ-
ent from a function, except that it is executed concurrently to another function. In Example 44.1, five numbers
are written to the standard output stream in a loop. To slow down the output, every iteration of the loop calls the
wait() function to stall for one second. wait() uses the function sleep_for(), which is also provided by
Boost.Thread and resides in the namespace boost::this_thread.
sleep_for() expects as its sole parameter a period of time that indicates how long the current thread should be
stalled. By passing an object of type boost::chrono::seconds, a period of time is set. boost::chrono::
seconds comes from Boost.Chrono which is introduced in Chapter 37.
sleep_for() only accepts types from Boost.Chrono. Even though Boost.Chrono has been part of the standard
library with C++11, types from std::chrono cannot be used with Boost.Thread. Doing so will lead to compiler
errors.
If you don’t want to call join() at the end of main(), you can use the class boost::scoped_thread. The
constructor of boost::scoped_thread expects an object of type boost::thread. In the destructor of boost:
:scoped_thread an action has access to that object. By default, boost::scoped_thread uses an action that
calls join() on the thread. Thus, Example 44.2 works like Example 44.1.
Example 44.2 Waiting for a thread with boost::scoped_thread

#include <boost/thread.hpp>
#include <boost/thread/scoped_thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

void thread()
{

for (int i = 0; i < 5; ++i)
{

wait(1);
std::cout << i << '\n';

}
}

int main()
{

boost::scoped_thread<> t{boost::thread{thread}};
}

You can pass a user-defined action as a template parameter. The action must be a class with an operator operato
r() that accepts an object of type boost::thread. boost::scoped_thread guarantees that the operator will
be called in the destructor.
You can find the class boost::scoped_thread only in Boost.Thread. There is no counterpart in the standard
library. Make sure you include the header file boost/thread/scoped_thread.hpp for boost::scoped
_thread.
Example 44.3 introduces interruption points, which make it possible to interrupt threads. Interruption points are
only supported by Boost.Thread and not by the standard library.
Calling interrupt() on a thread object interrupts the corresponding thread. In this context, interrupt means
that an exception of type boost::thread_interrupted is thrown in the thread. However, this only happens
when the thread reaches an interruption point.
Example 44.3 An interruption point with boost::this_thread::sleep_for()

#include <boost/thread.hpp>
#include <boost/chrono.hpp>

207

CHAPTER 44. BOOST.THREAD 44.1. CREATING AND MANAGING THREADS

#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

void thread()
{

try
{

for (int i = 0; i < 5; ++i)
{

wait(1);
std::cout << i << '\n';

}
}
catch (boost::thread_interrupted&) {}

}

int main()
{

boost::thread t{thread};
wait(3);
t.interrupt();
t.join();

}

Simply calling interrupt() does not have an effect if the given thread does not contain an interruption point.
Whenever a thread reaches an interruption point it will check whether interrupt() has been called. If it has
been called, an exception of type boost::thread_interrupted will be thrown.
Boost.Thread defines a series of interruption points such as the sleep_for() function. Because sleep_for()
is called five times in Example 44.3, the thread checks five times whether or not it has been interrupted. Between
the calls to sleep_for(), the thread can not be interrupted.
Example 44.3 doesn’t display five numbers, because interrupt() is called after three seconds in main().
Thus, the corresponding thread is interrupted and throws a boost::thread_interrupted exception. The ex-
ception is correctly caught inside the thread even though the catch handler is empty. Because the thread()
function returns after the handler, the thread terminates as well. This, in turn, will cause the program to terminate
because main() was waiting for the thread to terminate.
Boost.Thread defines about fifteen interruption points, including sleep_for(). These interruption points make
it easy to interrupt threads in a timely manner. However, interruption points may not always be the best choice
because they must be reached before the thread can check for a boost::thread_interrupted exception.
Example 44.4 Disabling interruption points with disable_interruption

#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

void thread()
{

boost::this_thread::disable_interruption no_interruption;
try
{

for (int i = 0; i < 5; ++i)
{

wait(1);
std::cout << i << '\n';

}

208

CHAPTER 44. BOOST.THREAD 44.1. CREATING AND MANAGING THREADS

}
catch (boost::thread_interrupted&) {}

}

int main()
{

boost::thread t{thread};
wait(3);
t.interrupt();
t.join();

}

The class boost::this_thread::disable_interruption prevents a thread from being interrupted. If you
instantiate boost::this_thread::disable_interruption, interruption points in a thread will be disabled
as long as the object exists. Thus, Example 44.4 displays five numbers because the attempt to interrupt the thread
is ignored.
Example 44.5 Setting thread attributes with boost::thread::attributes

#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

void thread()
{

try
{

for (int i = 0; i < 5; ++i)
{

wait(1);
std::cout << i << '\n';

}
}
catch (boost::thread_interrupted&) {}

}

int main()
{

boost::thread::attributes attrs;
attrs.set_stack_size(1024);
boost::thread t{attrs, thread};
t.join();

}

boost::thread::attributes is used to set thread attributes. In version 1.56.0, you can only set one platform-
independent attribute, the stack size. In Example 44.5, the stack size is set to 1024 bytes by boost::thread::
attributes::set_stack_size().
Example 44.6 Detecting the thread ID and number of available processors

#include <boost/thread.hpp>
#include <iostream>

int main()
{

std::cout << boost::this_thread::get_id() << '\n';
std::cout << boost::thread::hardware_concurrency() << '\n';

}

209

CHAPTER 44. BOOST.THREAD 44.2. SYNCHRONIZING THREADS

In the namespace boost::this_thread, free-standing functions are defined that apply to the current thread.
One of these functions is sleep_for(), which we have seen before. Another one is get_id(), which returns
a number to uniquely identify the current thread (see Example 44.6). get_id() is also provided as a member
function by the class boost::thread.
The static member function boost::thread::hardware_concurrency() returns the number of threads that
can physically be executed at the same time, based on the underlying number of CPUs or CPU cores. Calling
this function on a dual-core processor returns a value of 2. This function provides a simple method to identify the
theoretical maximum number of threads that should be used.
Boost.Thread also provides the class boost::thread_group to manage threads in groups. One function this
class provides, the member function join_all(), waits for all threads in the group to terminate.

44.2 Synchronizing Threads
While using multiple threads can increase the performance of an application, it usually also increases complexity.
If several functions execute at the same time, access to shared resources must be synchronized. This involves
significant programming effort once the application reaches a certain size. This section introduces the classes
provided by Boost.Thread to synchronize threads.
Example 44.7 Exclusive access with boost::mutex

#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

boost::mutex mutex;

void thread()
{

using boost::this_thread::get_id;
for (int i = 0; i < 5; ++i)
{

wait(1);
mutex.lock();
std::cout << "Thread " << get_id() << ": " << i << std::endl;
mutex.unlock();

}
}

int main()
{

boost::thread t1{thread};
boost::thread t2{thread};
t1.join();
t2.join();

}

Multithreaded programs use mutexes for synchronization. Boost.Thread provides different mutex classes with
boost::mutex being the simplest. The basic principle of a mutex is to prevent other threads from taking owner-
ship while a particular thread owns the mutex. Once released, a different thread can take ownership. This causes
threads to wait until the thread that owns the mutex has finished processing and releases its ownership of the mu-
tex.
Example 44.7 uses a global mutex of type boost::mutex called mutex. The thread() function takes owner-
ship of this object by calling lock(). This is done right before the function writes to the standard output stream.
Once a message has been written, ownership is released by calling unlock().
main() creates two threads, both of which are executing the thread() function. Each thread counts to five and
writes a message to the standard output stream in each iteration of the for loop. Because std::cout is a global

210

CHAPTER 44. BOOST.THREAD 44.2. SYNCHRONIZING THREADS

object shared by the threads, access must be synchronized. Otherwise, messages could get mixed up. Synchro-
nization guarantees that at any given time, only one thread has access to std::cout. Both threads try to acquire
the mutex before writing to the standard output stream, but only one thread at a time actually accesses std::
cout. No matter which thread successfully calls lock(), all other threads need to wait until unlock() has been
called.
Example 44.8 boost::lock_guard with guaranteed mutex release
#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

boost::mutex mutex;

void thread()
{

using boost::this_thread::get_id;
for (int i = 0; i < 5; ++i)
{

wait(1);
boost::lock_guard<boost::mutex> lock{mutex};
std::cout << "Thread " << get_id() << ": " << i << std::endl;

}
}

int main()
{

boost::thread t1{thread};
boost::thread t2{thread};
t1.join();
t2.join();

}

Acquiring and releasing mutexes is a typical scheme and is supported by Boost.Thread through different types.
For example, instead of using lock() and unlock(), you can use boost::lock_guard.
boost::lock_guard automatically calls lock() and unlock() in its constructor and its destructor, respec-
tively. Access to the shared resource is synchronized in Example 44.8 just as it was when both member functions
were called explicitly. The class boost::lock_guard is an example of the RAII idiom to make sure resources
are released when they are no longer needed.
Besides boost::mutex and boost::lock_guard, Boost.Thread provides additional classes to support vari-
ants of synchronization. One of the essential ones is boost::unique_lock which provides several helpful
member functions.
Example 44.9 uses two variants of the thread() function. Both variants still write five numbers in a loop to the
standard output stream, but they now use the class boost::unique_lock to lock a mutex.
thread1() passes the variable mutex to the constructor of boost::unique_lock, which makes boost::
unique_lock try to lock the mutex. In this case boost::unique_lock behaves no differently than boost::
lock_guard. The constructor of boost::unique_lock calls lock() on the mutex.
However, the destructor of boost::unique_lock doesn’t release the mutex in thread1(). In thread1()
release() is called on the lock, which decouples the mutex from the lock. By default, the destructor of boost:
:unique_lock releases a mutex, like the destructor of boost::lock_guard – but not if the mutex is decou-
pled. That’s why there is an explicit call to unlock() in thread1().
thread2() passes mutex and boost::try_to_lock to the constructor of boost::unique_lock. This makes
the constructor of boost::unique_lock not call lock() on the mutex but try_lock(). Thus, the constructor
only tries to lock the mutex. If the mutex is owned by another thread, the try fails.
owns_lock() lets you detect whether boost::unique_lock was able to lock a mutex. If owns_lock() re-
turns true, thread2() can access std::cout immediately. If owns_lock() returns false, try_lock_
for() is called. This member function also tries to lock a mutex, but it waits for the mutex for a specified period
of time before failing. In Example 44.9 the lock tries for one second to obtain the mutex. If try_lock_for()

211

CHAPTER 44. BOOST.THREAD 44.2. SYNCHRONIZING THREADS

returns true, std::cout may be accessed. Otherwise, thread2() gives up and skips a number. Thus, it is
possible that the second thread in the example won’t write five numbers to the standard output stream.
Please note that in Example 44.9, the type of mutex is boost::timed_mutex, not boost::mutex. The ex-
ample uses boost::timed_mutex because this mutex is the only one that provides the member function try
_lock_for(). This member function is called when try_lock_for() is called on the lock. boost::mutex
provides only the member functions lock() and try_lock().
boost::unique_lock is an exclusive lock. An exclusive lock is always the sole owner of a mutex. Another
lock can only get control of the mutex after the exclusive lock has released it. Boost.Thread also supports shared
locks with the class boost::shared_lock, which is used with shared_mutex.
Example 44.9 The versatile lock boost::unique_lock

#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

boost::timed_mutex mutex;

void thread1()
{

using boost::this_thread::get_id;
for (int i = 0; i < 5; ++i)
{

wait(1);
boost::unique_lock<boost::timed_mutex> lock{mutex};
std::cout << "Thread " << get_id() << ": " << i << std::endl;
boost::timed_mutex *m = lock.release();
m->unlock();

}
}

void thread2()
{

using boost::this_thread::get_id;
for (int i = 0; i < 5; ++i)
{

wait(1);
boost::unique_lock<boost::timed_mutex> lock{mutex,

boost::try_to_lock};
if (lock.owns_lock() || lock.try_lock_for(boost::chrono::seconds{1}))
{

std::cout << "Thread " << get_id() << ": " << i << std::endl;
}

}
}

int main()
{

boost::thread t1{thread1};
boost::thread t2{thread2};
t1.join();
t2.join();

}

Example 44.10 Shared locks with boost::shared_lock

#include <boost/thread.hpp>
#include <boost/chrono.hpp>
#include <iostream>
#include <vector>

212

CHAPTER 44. BOOST.THREAD 44.2. SYNCHRONIZING THREADS

#include <cstdlib>
#include <ctime>

void wait(int seconds)
{

boost::this_thread::sleep_for(boost::chrono::seconds{seconds});
}

boost::shared_mutex mutex;
std::vector<int> random_numbers;

void fill()
{

std::srand(static_cast<unsigned int>(std::time(0)));
for (int i = 0; i < 3; ++i)
{

boost::unique_lock<boost::shared_mutex> lock{mutex};
random_numbers.push_back(std::rand());
lock.unlock();
wait(1);

}
}

void print()
{

for (int i = 0; i < 3; ++i)
{

wait(1);
boost::shared_lock<boost::shared_mutex> lock{mutex};
std::cout << random_numbers.back() << '\n';

}
}

int sum = 0;

void count()
{

for (int i = 0; i < 3; ++i)
{

wait(1);
boost::shared_lock<boost::shared_mutex> lock{mutex};
sum += random_numbers.back();

}
}

int main()
{

boost::thread t1{fill}, t2{print}, t3{count};
t1.join();
t2.join();
t3.join();
std::cout << "Sum: " << sum << '\n';

}

Non-exclusive locks of type boost::shared_lock can be used if threads only need read-only access to a spe-
cific resource. A thread modifying the resource needs write access and thus requires an exclusive lock. Since a
thread with read-only access is unaffected by other threads reading the same resource at the same time, it can use
a non-exclusive lock and share a mutex.
In Example 44.10, both print() and count() only read the variable random_numbers. The print() func-
tion writes the last value in random_numbers to the standard output stream, and the count() function adds it to
the variable sum. Because neither function modifies random_numbers, both can access it at the same time using
a non-exclusive lock of type boost::shared_lock.
Inside the fill() function, an exclusive lock of type boost::unique_lock is required because it inserts new

213

CHAPTER 44. BOOST.THREAD 44.2. SYNCHRONIZING THREADS

random numbers into random_numbers. fill() releases the mutex using the unlock() member function
and then waits for one second. Unlike the previous examples, wait() is called at the end of the for loop to
guarantee that at least one random number is placed in the container before it is accessed by either print() or
count(). Both of these functions call the wait() function at the beginning of their for loops.
Looking at the individual calls to the wait() function from different locations, one potential issue becomes ap-
parent: The order of the function calls is directly affected by the order in which the CPU actually executes the
individual threads. Using condition variables, the individual threads can be synchronized so that values added to
random_numbers are immediately processed by a different thread.
Example 44.11 removes the wait() and count() functions. Threads no longer wait for one second in every
iteration; rather, they execute as fast as possible. In addition, no total is calculated; numbers are just written to the
standard output stream.
To ensure correct processing of the random numbers, the individual threads are synchronized using a condition
variable, which can be checked for certain conditions between multiple threads.
As before, the fill() function generates a random number with each iteration and places it in the random_num
bers container. To block other threads from accessing the container at the same time, an exclusive lock is used.
Instead of waiting for one second, this example uses a condition variable. Calling notify_all() will wake up
every thread that has been waiting for this notification with wait().
Looking at the for loop of the print() function, you can see that the member function wait() is called for the
same condition variable. When the thread is woken up by a call to notify_all(), it tries to acquire the mutex,
which will only succeed after the mutex has been successfully released in the fill() function.
Example 44.11 Condition variables with boost::condition_variable_any

#include <boost/thread.hpp>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <ctime>

boost::mutex mutex;
boost::condition_variable_any cond;
std::vector<int> random_numbers;

void fill()
{

std::srand(static_cast<unsigned int>(std::time(0)));
for (int i = 0; i < 3; ++i)
{

boost::unique_lock<boost::mutex> lock{mutex};
random_numbers.push_back(std::rand());
cond.notify_all();
cond.wait(mutex);

}
}

void print()
{

std::size_t next_size = 1;
for (int i = 0; i < 3; ++i)
{

boost::unique_lock<boost::mutex> lock{mutex};
while (random_numbers.size() != next_size)

cond.wait(mutex);
std::cout << random_numbers.back() << '\n';
++next_size;
cond.notify_all();

}
}

int main()
{

boost::thread t1{fill};
boost::thread t2{print};
t1.join();

214

CHAPTER 44. BOOST.THREAD 44.3. THREAD LOCAL STORAGE

t2.join();
}

The trick here is that calling wait() also releases the mutex which was passed as a parameter. After calling
notify_all(), the fill() function releases the mutex by calling wait(). It then blocks and waits for some
other thread to call notify_all(), which happens in the print() function once the random number has been
written to the standard output stream.
Notice that the call to the wait() member function inside the print() function actually happens within a sep-
arate while loop. This is done to handle the scenario where a random number has already been placed in the
container before the wait() member function is called for the first time in print(). By comparing the num-
ber of stored elements in random_numbers with the expected number of elements, this scenario is successfully
handled and the random number is written to the standard output stream.
Example 44.11 also works if the locks aren’t local in the for loop but instantiated in the outer scope. In fact this
makes more sense because the locks don’t need to be destroyed and recreated in every iteration. Since the mutex
is always released with wait(), you don’t need to destroy the locks at the end of an iteration.

44.3 Thread Local Storage
Thread Local Storage (TLS) is a dedicated storage area that can only be accessed by one thread. TLS variables
can be seen as global variables that are only visible to a particular thread and not the whole program.
Example 44.12 Synchronizing multiple threads with static variables
#include <boost/thread.hpp>
#include <iostream>

boost::mutex mutex;

void init()
{

static bool done = false;
boost::lock_guard<boost::mutex> lock{mutex};
if (!done)
{

done = true;
std::cout << "done" << '\n';

}
}

void thread()
{

init();
init();

}

int main()
{

boost::thread t[3];

for (int i = 0; i < 3; ++i)
t[i] = boost::thread{thread};

for (int i = 0; i < 3; ++i)
t[i].join();

}

Example 44.12 executes a function thread() in three threads. thread() calls another function init() twice,
and init() checks whether the boolean variable done is false. If it is, the variable is set to true and done is
written to standard output.
done is a static variable that is shared by all threads. If the first thread sets done to true, the second and third
thread won’t write done to standard output. The second call of init() in any thread won’t write done to stan-
dard output either. The example will print done once.

215

CHAPTER 44. BOOST.THREAD 44.4. FUTURES AND PROMISES

A static variable like done can be used to do a one-time initialization in a process. To do a one-time initialization
per thread, TLS can be used.
Example 44.13 Synchronizing multiple threads with TLS

#include <boost/thread.hpp>
#include <iostream>

boost::mutex mutex;

void init()
{

static boost::thread_specific_ptr<bool> tls;
if (!tls.get())
{

tls.reset(new bool{true});
boost::lock_guard<boost::mutex> lock{mutex};
std::cout << "done" << '\n';

}
}

void thread()
{

init();
init();

}

int main()
{

boost::thread t[3];

for (int i = 0; i < 3; ++i)
t[i] = boost::thread{thread};

for (int i = 0; i < 3; ++i)
t[i].join();

}

In Example 44.13, the static variable done has been replaced with a TLS variable, tls, which is based on the
class template boost::thread_specific_ptr – instantiated with the type bool. In principle, tls works like
done: It acts as a condition that indicates whether or not something has already been done. The crucial differ-
ence, however, is that the value stored by tls is only visible and available to the corresponding thread.
Once a variable of type boost::thread_specific_ptr is created, it can be set. This variable expects the ad-
dress of a variable of type bool instead of the variable itself. Using the reset() member function, the address
can be stored in tls. In Example 44.13, a variable of type bool is dynamically allocated and its address, returned
by new, is stored in tls. To avoid setting tls every time init() is called, the member function get() is used
to check whether an address has already been stored.
Because boost::thread_specific_ptr stores an address, this class behaves like a pointer. For example, it
provides the member functions operator* and operator->, which work as you would expect them to work
with pointers.
Example 44.13 prints done to standard output three times. Each thread prints done in the first call to init().
Because a TLS variable is used, each thread uses its own variable tls. When the first thread initializes tls with
a pointer to a dynamically allocated boolean variable, the tls variables in the second and third thread are still
uninitialized. Since TLS variables are global per thread, not global per process, using tls in one thread does not
change the variable in any other thread.

44.4 Futures and Promises
Futures and promises are tools to pass data from one thread to another. While this could also be done with other
capabilities, such as global variables, futures and promises work without them. Furthermore, you don’t need to
handle synchronization yourself.

216

CHAPTER 44. BOOST.THREAD 44.4. FUTURES AND PROMISES

A future is a variable which receives a value from another thread. If you access a future to get the value, you
might need to wait until the other thread has provided the value. Boost.Thread provides boost::future to de-
fine a future. The class defines a member function get() to get the value. get() is a blocking function that may
have to wait for another thread.
To set a value in a future, you need to use a promise, because boost::future does not provide a member func-
tion to set a value.
Boost.Thread provides the class boost::promise, which has a member function set_value(). You always
use future and promise as a pair. You can get a future from a promise with get_future(). You can use the fu-
ture and the promise in different threads. If a value is set in the promise in one thread, it can be fetched from the
future in another thread.
Example 44.14 Using boost::future and boost::promise

#define BOOST_THREAD_PROVIDES_FUTURE
#include <boost/thread.hpp>
#include <boost/thread/future.hpp>
#include <functional>
#include <iostream>

void accumulate(boost::promise<int> &p)
{

int sum = 0;
for (int i = 0; i < 5; ++i)

sum += i;
p.set_value(sum);

}

int main()
{

boost::promise<int> p;
boost::future<int> f = p.get_future();
boost::thread t{accumulate, std::ref(p)};
std::cout << f.get() << '\n';

}

Example 44.14 uses a future and a promise. The future f is received from the promise p. A reference to the
promise is then passed to the thread t which executes the accumulate() function. accumulate() calculates
the total of all numbers between 0 and 5 and saves it in the promise. In main() get() is called on the future to
write the total to standard output.
The future f and the promise p are linked. When get() is called on the future, the value stored in the promise
with set_value() is returned. Because the example uses two threads, it is possible that get() will be called
in main() before accumulate() has called set_value(). In that case, get() blocks until a value has been
stored in the promise with set_value().
Example 44.14 displays 10.
accumulate() had to be adapted to be executed in a thread. It has to take a parameter of type boost::prom
ise and store the result in it. Example 44.15 introduces boost::packaged_task, a class that forwards a value
from any function to a future as long as the function returns the result with return.
Example 44.15 Using boost::packaged_task

#define BOOST_THREAD_PROVIDES_FUTURE
#include <boost/thread.hpp>
#include <boost/thread/future.hpp>
#include <utility>
#include <iostream>

int accumulate()
{

int sum = 0;
for (int i = 0; i < 5; ++i)

sum += i;
return sum;

}

int main()

217

CHAPTER 44. BOOST.THREAD 44.4. FUTURES AND PROMISES

{
boost::packaged_task<int> task{accumulate};
boost::future<int> f = task.get_future();
boost::thread t{std::move(task)};
std::cout << f.get() << '\n';

}

Example 44.15 is similar to the previous one, but this time boost::promise is not used. Instead, this example
uses the class boost::packaged_task, which, like boost::promise, provides a member function get_fut
ure() that returns a future.
The constructor of boost::packaged_task expects as a parameter the function that will be executed in a
thread, but boost::packaged_task doesn’t start a thread itself. An object of type boost::packaged_task
has to be passed to the constructor of boost::thread for the function to be executed in a new thread.
The advantage of boost::packaged_task is that it stores the return value of a function in a future. You don’t
need to adapt a function to store its value in a future. boost::packaged_task can be seen as an adapter which
can store the return value of any function in a future.
While the example got rid of boost::promise, the following example doesn’t use boost::packaged_task
and boost::thread either.
Example 44.16 Using boost::async()

#define BOOST_THREAD_PROVIDES_FUTURE
#include <boost/thread.hpp>
#include <boost/thread/future.hpp>
#include <iostream>

int accumulate()
{

int sum = 0;
for (int i = 0; i < 5; ++i)

sum += i;
return sum;

}

int main()
{

boost::future<int> f = boost::async(accumulate);
std::cout << f.get() << '\n';

}

In Example 44.16 accumulate() is passed to the function boost::async(). This function unifies boost::
packaged_task and boost::thread. It starts accumulate() in a new thread and returns a future.
It is possible to pass a launch policy to boost::async(). This additional parameter determines whether boost:
:async() will execute the function in a new thread or in the current thread. If you pass boost::launch::
async, boost::async() will start a new thread; this is the default behavior. If you pass boost::launch::
deferred, the function will be executed in the current thread when get() is called.
Although Boost 1.56.0 allows either boost::launch::async or boost::launch::deferred to be passed
to boost::async(), executing the function in the current thread is not yet implemented. If you pass boost::
launch::deferred, the program will terminate.

218

Chapter 45

Boost.Atomic

Boost.Atomic provides the class boost::atomic, which can be used to create atomic variables. They are called
atomic variables because all access is atomic. Boost.Atomic is used in multithreaded programs when access to a
variable in one thread shouldn’t be interrupted by another thread accessing the same variable. Without boost::
atomic, attempts to access shared variables from multiple threads would need to be synchronized with locks.
boost::atomic depends on the target platform supporting atomic variable access. Otherwise, boost::atomic
uses locks. The library allows you to detect whether a target platform supports atomic variable access.
If your development environment supports C++11, you don’t need Boost.Atomic. The C++11 standard library
provides a header file atomic that defines the same functionality as Boost.Atomic. For example, you will find a
class named std::atomic.
Boost.Atomic supports more or less the same functionality as the standard library. While a few functions are
overloaded in Boost.Atomic, they may have different names in the standard library. The standard library also
provides some functions, such as std::atomic_init() and std::kill_dependency(), which are missing
in Boost.Atomic.
Example 45.1 Using boost::atomic

#include <boost/atomic.hpp>
#include <thread>
#include <iostream>

boost::atomic<int> a{0};

void thread()
{

++a;
}

int main()
{

std::thread t1{thread};
std::thread t2{thread};
t1.join();
t2.join();
std::cout << a << '\n';

}

Example 45.1 uses two threads to increment the int variable a. Instead of a lock, the example uses boost::ato
mic for atomic access to a. The example writes 2 to standard output.
boost::atomic works because some processors support atomic access on variables. If incrementing an int vari-
able is an atomic operation, a lock isn’t required. If this example is run on a platform that cannot increment a
variable as an atomic operation, boost::atomic uses a lock.
Example 45.2 boost::atomic with or without lock
#include <boost/atomic.hpp>
#include <iostream>

int main()
{

219

http://www.boost.org/libs/atomic

CHAPTER 45. BOOST.ATOMIC

std::cout.setf(std::ios::boolalpha);

boost::atomic<short> s;
std::cout << s.is_lock_free() << '\n';

boost::atomic<int> i;
std::cout << i.is_lock_free() << '\n';

boost::atomic<long> l;
std::cout << l.is_lock_free() << '\n';

}

You can call is_lock_free() on an atomic variable to check whether accessing the variable is done without a
lock. If you run the example on an Intel x86 processor, it displays true three times. If you run it on a processor
without lock-free access on short, int and long variables, false is displayed.
Boost.Atomic provides the BOOST_ATOMIC_INT_LOCK_FREE and BOOST_ATOMIC_LONG_LOCK_FREE macros
to check, at compile time, which data types support lock-free access.
Example 45.2 uses integral data types only. You should not use boost::atomic with classes like std::str
ing or std::vector. Boost.Atomic supports integers, pointers, booleans (bool), and trivial classes. Exam-
ples of integral types include short, int and long. Trivial classes define objects that can be copied with std::
memcpy().
Example 45.3 boost::atomic with boost::memory_order_seq_cst

#include <boost/atomic.hpp>
#include <thread>
#include <iostream>

boost::atomic<int> a{0};

void thread()
{

a.fetch_add(1, boost::memory_order_seq_cst);
}

int main()
{

std::thread t1{thread};
std::thread t2{thread};
t1.join();
t2.join();
std::cout << a << '\n';

}

Example 45.3 increments a twice – this time not with operator++ but with a call to fetch_add(). The mem-
ber function fetch_add() can take two parameters: the number by which a should be incremented and the
memory order.
The memory order specifies the order in which access operations on memory must occur. By default, this order
is undetermined and does not depend on the order of the lines of code. Compilers and processors are allowed
to change the order as long as a program behaves as if memory access operations were executed in source code
order. This rule only applies to a thread. If more than one thread is used, variations in the order of memory ac-
cesses can lead to a program acting erroneously. Boost.Atomic supports specifying a memory order when access-
ing variables to make sure memory accesses occur in the desired order in a multithreaded program.

Note

Specifying memory order optimizes performance, but it increases complexity and makes
it more difficult to write correct code. Therefore, in practice, you should have a really good
reason for using memory orders.

220

CHAPTER 45. BOOST.ATOMIC

Example 45.3 uses the memory order boost::memory_order_seq_cst to increment a by 1. The memory
order stands for sequential consistency. This is the most restrictive memory order. All memory accesses that ap-
pear before the fetch_add() call must occur before this member function is executed. All memory accesses
that appear after the fetch_add() call must occur after this member function is executed. Compilers and pro-
cessors may reorder memory accesses before and after the call to fetch_add(), but they must not move a mem-
ory access from before to after the call to fetch_add() or vice versa. boost::memory_order_seq_cst is a
strict boundary for memory accesses in both directions.
boost::memory_order_seq_cst is the most restrictive memory order. It is used by default when memory
order is not set. Therefore, in Example 45.1, when a is incremented with operator++, boost::memory_orde
r_seq_cst will be used.
boost::memory_order_seq_cst isn’t always necessary. For example, in Example 45.3 there is no need to
synchronize memory accesses for other variables because a is the only variable the threads use. a is written to
standard output in main(), but only after both threads have terminated. The call to join() guarantees that a is
only read after both threads have finished.
Example 45.4 boost::atomic with boost::memory_order_relaxed

#include <boost/atomic.hpp>
#include <thread>
#include <iostream>

boost::atomic<int> a{0};

void thread()
{

a.fetch_add(1, boost::memory_order_relaxed);
}

int main()
{

std::thread t1{thread};
std::thread t2{thread};
t1.join();
t2.join();
std::cout << a << '\n';

}

Example 45.4 sets the memory order to boost::memory_order_relaxed. This is the least restrictive memory
order: it allows arbitrary reordering of memory accesses. This example works with this memory order because
the threads access no variables except a. Therefore, no specific order is required.
Example 45.5 boost::atomic with memory_order_release and memory_order_acquire

#include <boost/atomic.hpp>
#include <thread>
#include <iostream>

boost::atomic<int> a{0};
int b = 0;

void thread1()
{

b = 1;
a.store(1, boost::memory_order_release);

}

void thread2()
{

while (a.load(boost::memory_order_acquire) != 1)
;

std::cout << b << '\n';
}

int main()
{

221

CHAPTER 45. BOOST.ATOMIC

std::thread t1{thread1};
std::thread t2{thread2};
t1.join();
t2.join();

}

There are choices between the most restrictive memory order, boost::memory_order_seq_cst, and the least
restrictive one, boost::memory_order_relaxed. Example 45.5 introduces the memory orders boost::memo
ry_order_release and boost::memory_order_acquire.
Memory accesses that appear in the code before the boost::memory_order_release statement are executed
before the boost::memory_order_release statement is executed. Compilers and processors must not move
memory accesses from before to after boost::memory_order_release. However, they may move memory
accesses from after to before boost::memory_order_release.
boost::memory_order_acquire works like boost::memory_order_release, but refers to memory ac-
cesses after boost::memory_order_acquire. Compilers and processors must not move memory accesses
from after the boost::memory_order_acquire statement to before it. However, they may move memory ac-
cesses from before to after boost::memory_order_acquire.
Example 45.5 uses boost::memory_order_release in the first thread to make sure that b is set to 1 before a
is set to 1. boost::memory_order_release guarantees that the memory access on b occurs before the mem-
ory access on a.
To specify a memory order when accessing a, store() is called. This member function corresponds to an as-
signment with operator=.
The second thread reads a in a loop. This is done with the member function load(). Again, no assignment oper-
ator is used.
In the second thread, boost::memory_order_acquire makes sure that the memory access on b doesn’t occur
before the memory access on a. The second thread waits in the loop for a to be set to 1 by the first thread. Once
this happens, b is read.
The example writes 1 to standard output. The memory orders ensure that all memory accesses occur in the right
order. The first thread always writes 1 to b first before the second thread accesses and reads b.

Tip

For more details and examples on how memory orders work, you can find an explanation
in the GCC Wiki article on memory model synchronization modes.

222

http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync

Chapter 46

Boost.Lockfree

Boost.Lockfree provides thread-safe and lock-free containers. Containers from this library can be accessed from
multiple threads without having to synchronize access.
In version 1.56.0, Boost.Lockfree provides only two containers: a queue of type boost::lockfree::queue
and a stack of type boost::lockfree::stack. For the queue, a second implementation is available: boost:
:lockfree::spsc_queue. This class is optimized for use cases where exactly one thread writes to the queue
and exactly one thread reads from the queue. The abbreviation spsc in the class name stands for single produc-
er/single consumer.
Example 46.1 uses the container boost::lockfree::spsc_queue. The first thread, which executes the func-
tion produce(), adds the numbers 1 to 100 to the container. The second thread, which executes consume(),
reads the numbers from the container and adds them up in sum. Because the container boost::lockfree::sps
c_queue explicitly supports concurrent access from two threads, it isn’t necessary to synchronize the threads.
Please note that the function consume() is called a second time after the threads terminate. This is required to
calculate the total of all 100 numbers, which is 5050. Because consume() accesses the queue in a loop, it is pos-
sible that it will read the numbers faster than they are inserted by produce(). If the queue is empty, pop() re-
turns false. Thus, the thread executing consume() could terminate because produce() in the other thread
couldn’t fill the queue fast enough. If the thread executing produce() is terminated, then it’s clear that all of the
numbers were added to the queue. The second call to consume() makes sure that numbers that may not have
been read yet are added to sum.
Example 46.1 Using boost::lockfree::spsc_queue

#include <boost/lockfree/spsc_queue.hpp>
#include <thread>
#include <iostream>

boost::lockfree::spsc_queue<int> q{100};
int sum = 0;

void produce()
{

for (int i = 1; i <= 100; ++i)
q.push(i);

}

void consume()
{

int i;
while (q.pop(i))

sum += i;
}

int main()
{

std::thread t1{produce};
std::thread t2{consume};
t1.join();
t2.join();

223

http://www.boost.org/libs/lockfree

CHAPTER 46. BOOST.LOCKFREE

consume();
std::cout << sum << '\n';

}

The size of the queue is passed to the constructor. Because boost::lockfree::spsc_queue is implemented
with a circular buffer, the queue in Example 46.1 has a capacity of 100 elements. If a value can’t be added be-
cause the queue is full, push() returns false. The example doesn’t check the return value of push() because
exactly 100 numbers are added to the queue. Thus, 100 elements is sufficient.
Example 46.2 works like the previous example, but this time the size of the circular buffer is set at compile time.
This is done with the template boost::lockfree::capacity, which expects the capacity as a template pa-
rameter. q is instantiated with the default constructor – the capacity cannot be set at run time.
The function consume() has been changed to use consume_one(), rather than pop(), to read the number. A
lambda function is passed as a parameter to consume_one(). consume_one() reads a number just like pop(),
but the number isn’t returned through a reference to the caller. It is passed as the sole parameter to the lambda
function.
When the threads terminate, main() calls the member function consume_all(), instead of consume(). cons
ume_all() works like consume_one() but makes sure that the queue is empty after the call. consume_all()
calls the lambda function as long as there are elements in the queue.
Example 46.2 boost::lockfree::spsc_queue with boost::lockfree::capacity

#include <boost/lockfree/spsc_queue.hpp>
#include <boost/lockfree/policies.hpp>
#include <thread>
#include <iostream>

using namespace boost::lockfree;

spsc_queue<int, capacity<100>> q;
int sum = 0;

void produce()
{

for (int i = 1; i <= 100; ++i)
q.push(i);

}

void consume()
{

while (q.consume_one([](int i){ sum += i; }))
;

}

int main()
{

std::thread t1{produce};
std::thread t2{consume};
t1.join();
t2.join();
q.consume_all([](int i){ sum += i; });
std::cout << sum << '\n';

}

Once again, Example 46.2 writes 5050 to standard output.
Example 46.3 executes consume() in two threads. Because more than one thread reads from the queue, the class
boost::lockfree::spsc_queue must not be used. This example uses boost::lockfree::queue instead.
Thanks to std::atomic, access to the variable sum is also now thread safe.
The size of the queue is set to 100 – this is the parameter passed to the constructor. However, this is only the ini-
tial size. By default, boost::lockfree::queue is not implemented with a circular buffer. If more items are
added to the queue than the capacity is set to, it is automatically increased. boost::lockfree::queue dynam-
ically allocates additional memory if the initial size isn’t sufficient.
Example 46.3 boost::lockfree::queue with variable container size

224

CHAPTER 46. BOOST.LOCKFREE

#include <boost/lockfree/queue.hpp>
#include <thread>
#include <atomic>
#include <iostream>

boost::lockfree::queue<int> q{100};
std::atomic<int> sum{0};

void produce()
{

for (int i = 1; i <= 10000; ++i)
q.push(i);

}

void consume()
{

int i;
while (q.pop(i))

sum += i;
}

int main()
{

std::thread t1{produce};
std::thread t2{consume};
std::thread t3{consume};
t1.join();
t2.join();
t3.join();
consume();
std::cout << sum << '\n';

}

That means that boost::lockfree::queue isn’t necessarily lock free. The allocator used by boost::lockf
ree::queue by default is boost::lockfree::allocator, which is based on std::allocator. Thus, this
allocator determines whether boost::lockfree::queue is lock free without constraints.
Example 46.4 uses a constant size of 10,000 elements. In this example, the queue doesn’t allocate additional
memory when it is full. 10,000 is a fixed upper limit.
The queue’s capacity is constant because boost::lockfree::fixed_sized is passed as a template parameter.
The capacity is passed as a parameter to the constructor and can be updated at any time using reserve(). If the
capacity must be set at compile time, boost::lockfree::capacity can be passed as a template parameter to
boost::lockfree::queue. boost::lockfree::capacity includes boost::lockfree::fixed_sized.
Example 46.4 boost::lockfree::queue with constant container size
#include <boost/lockfree/queue.hpp>
#include <thread>
#include <atomic>
#include <iostream>

using namespace boost::lockfree;

queue<int, fixed_sized<true>> q{10000};
std::atomic<int> sum{0};

void produce()
{

for (int i = 1; i <= 10000; ++i)
q.push(i);

}

void consume()
{

int i;

225

CHAPTER 46. BOOST.LOCKFREE

while (q.pop(i))
sum += i;

}

int main()
{

std::thread t1{produce};
std::thread t2{consume};
std::thread t3{consume};
t1.join();
t2.join();
t3.join();
consume();
std::cout << sum << '\n';

}

In Example 46.4, the queue has a capacity of 10,000 elements. Because consume() inserts 10,000 numbers into
the queue, the upper limit isn’t exceeded. If it were exceeded, push() would return false.
boost::lockfree::queue is similar to boost::lockfree::spsc_queue and also provides member func-
tions like consume_one() and consume_all().
The third class, boost::lockfree::stack, is similar to the other ones. As with boost::lockfree::queue,
boost::lockfree::fixed_size and boost::lockfree::capacity can be passed as template parameters.
The member functions are similar, too.

226

Chapter 47

Boost.MPI

Boost.MPI provides an interface to the MPI standard (Message Passing Interface). This standard simplifies the
development of programs that execute tasks concurrently. You could develop such programs using threads or by
making multiple processes communicate with each other through shared memory or network connections. The
advantage of MPI is that you don’t need to take care of such details. You can fully concentrate on parallelizing
your program.
A disadvantage is that you need an MPI runtime environment. MPI is only an option if you control the runtime
environment. For example, if you want to distribute a program that can be started with a double click, you won’t
be able to use MPI. While operating systems support threads, shared memory, and networks out of the box, they
usually don’t provide an MPI runtime environment. Users need to perform additional steps to start an MPI pro-
gram.

47.1 Development and Runtime Environment
MPI defines functions for parallel computing. Parallel computing refers to programs that can execute tasks con-
currently in runtime environments that support the parallel execution of tasks. Such runtime environments are
usually based on multiple processors. Because a single processor can only execute code sequentially, linking
multiple processors creates a runtime environment that can execute tasks in parallel. If thousands of processors
are linked, the result is a parallel computer – a type of architecture usually found only in supercomputers. MPI
comes from the search to find methods for programming supercomputers more easily.
If you want to use MPI, you need an implementation of the standard. While MPI defines many functions, they
are usually not supported by operating systems out of the box. For example, the desktop editions of Windows
aren’t shipped with MPI support.
The most important MPI implementations are MPICH and Open MPI. MPICH is one of the earliest MPI imple-
mentations. It has existed since the mid 1990s. MPICH is a mature and portable implementation that is actively
maintained and updated. The first version of Open MPI was released 2005. Because Open MPI is a collaborative
effort that includes many developers who were responsible for earlier MPI implementations, Open MPI is seen as
the future standard. However, that doesn’t mean that MPICH can be ignored. There are several MPI implemen-
tations that are based on MPICH. For example, Microsoft ships an MPI implementation called Microsoft HPC
Pack that is based on MPICH.
MPICH provides installation files for various operating systems, such as Windows, Linux, and OS X. If you need
an MPI implementation and don’t want to build it from source code, the MPICH installation files are the fastest
path to start using MPI.
The MPICH installation files contain the required header files and libraries to develop MPI programs. Further-
more, they contain an MPI runtime environment. Because MPI programs execute tasks on several processors
concurrently, they run in several processes. An MPI program is started multiple times, not just once. Several in-
stances of the same MPI program run on multiple processors and communicate through functions defined by the
MPI standard.
You can’t start an MPI program with a double click. You use a helper program, which is usually called mpiexec.
You pass your MPI program to mpiexec, which starts your program in the MPI runtime environment. Command
line options determine how many processes are started and how they communicate – for example, through sock-
ets or shared memory. Because the MPI runtime environment takes care of these details, you can concentrate on
parallel programming.

227

http://www.boost.org/libs/mpi
http://www.mpich.org/
http://www.open-mpi.org/

CHAPTER 47. BOOST.MPI 47.2. SIMPLE DATA EXCHANGE

If you decided to use the installation files from MPICH, note that MPICH only provides a 64-bit version. You
must use a 64-bit compiler to develop MPI programs with MPICH and build a 64-bit version of Boost.MPI.

47.2 Simple Data Exchange
Boost.MPI is a C++ interface to the MPI standard. The library uses the namespace boost::mpi. It is sufficient
to include the header file boost/mpi.hpp to get access to all classes and functions.
Example 47.1 MPI environment and communicator
#include <boost/mpi.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
std::cout << world.rank() << ", " << world.size() << '\n';

}

Example 47.1 is a simple MPI program. It uses two classes that you will find in all of the examples that follow.
boost::mpi::environment initializes MPI. The constructor calls the function MPI_Init() from the MPI
standard. The destructor calls MPI_Finalize(). boost::mpi::communicator is used to create a communi-
cator. The communicator is one of the central concepts of MPI and supports data exchange between processes.
boost::mpi::environment is a very simple class that provides only a few member functions. You can call
initialized() to check whether MPI has been initialized successfully. The member function returns a value
of type bool. processor_name() returns the name of the current process as a std::string. And abort()
stops an MPI program, not just the current process. You pass an int value to abort(). This value will be passed
to the MPI runtime environment as the return value of the MPI program. For most MPI programs you won’t need
these member functions. You usually instantiate boost::mpi::environment at the beginning of a program
and then don’t use the object afterwards – as in Example 47.1 and the following examples in this chapter.
boost::mpi::communicator is more interesting. This class is a communicator that links the processes that
are part of an MPI program. Every process has a rank, which is an integer – all processes are enumerated. A pro-
cess can discover its rank by calling rank() on the communicator. If a process wants to know how many pro-
cesses there are, it calls size().
To run Example 47.1, you have to use a helper program provided by the MPI implementation you are using. With
MPICH, the helper program is called mpiexec. You can run Example 47.1 using this helper with the following
command:

mpiexec -n 4 sample.exe

mpiexec expects the name of an MPI program and an option that tells it how many processes to launch. The op-
tion -n 4 tells mpiexec to launch four processes. Thus the MPI program is started four times. However, the four
processes aren’t independent. They are linked through the MPI runtime environment, and they all belong to the
same communicator, which gave each process a rank. If you run Example 47.1 with four processes, rank() re-
turns a number from 0 to 3 and size() 4.
Please note that the output can be mixed up. After all, four processes are writing to the standard output stream at
the same time. For example, it’s unknown whether the process with rank 0, or any other rank, is the first one to
write to the standard output stream. It’s also possible that one process will interrupt another one while writing to
the standard output stream. The interrupted process might not be able to complete writing its rank and the size of
the communicator before another process writes to the standard output stream, breaking up the output.
Example 47.2 Blocking functions to send and receive data
#include <boost/mpi.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

228

CHAPTER 47. BOOST.MPI 47.2. SIMPLE DATA EXCHANGE

int i;
world.recv(1, 16, i);
std::cout << i << '\n';

}
else if (world.rank() == 1)
{

world.send(0, 16, 99);
}

}

boost::mpi::communicator provides two simple member functions, send() and recv(), to exchange data
between two processes. They are blocking functions that only return when data has been sent or received. This is
especially important for recv(). If recv() is called without another process sending it data, the call blocks and
the process will stall in the call.
In Example 47.2, the process with rank 0 receives data with recv(). The process with rank 1 sends data with
send(). If you start the program with more than two processes, the other processes exit without doing anything.
You pass three parameters to send(): The first parameter is the rank of the process to which data should be sent.
The second parameter is a tag to identify data. The third parameter is the data.
The tag is always an integer. In Example 47.2 the tag is 16. The tag makes it possible to identify a call to send().
You’ll see that the tag is used with recv().
The third parameter passed to send() is 99. This number is sent from the process with rank 1 to the process with
rank 0. Boost.MPI supports all primitive types. An int value like 99 can be sent directly
recv() expects similar parameters. The first parameter is the rank of the process from which data should be
received. The second parameter is the tag that links the call to recv() with the call to send(). The third param-
eter is the variable to store the received data in.
If you run Example 47.2 with at least two processes, 99 is displayed.
Example 47.3 Receiving data from any process

#include <boost/mpi.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

int i;
world.recv(boost::mpi::any_source, 16, i);
std::cout << i << '\n';

}
else
{

world.send(0, 16, world.rank());
}

}

Example 47.3 is based on Example 47.2. Instead of sending the number 99, it sends the rank of the process that
calls send(). This could be any process with a rank greater than 0.
The call to recv() for the process with rank 0 has changed, too. boost::mpi::any_source is the first param-
eter. This means the call to recv() will accept data from any process that sends data with the tag 16.
If you start Example 47.3 with two processes, 1 will be displayed. After all, there is only one process that can
call send() – the process with rank 1. If you start the program with more than two processes, it’s unknown
which number will be displayed. In this case, multiple processes will call send() and try to send their rank.
Which process is first and, therefore, which rank is displayed, is random.
recv() has a return value of type boost::mpi::status. This class provides a member function source(),
which returns the rank of the process from which data was received. Example 47.4 tells you from which process
the number 99 was received.
Example 47.4 Detecting the sender with boost::mpi::status

#include <boost/mpi.hpp>
#include <iostream>

229

CHAPTER 47. BOOST.MPI 47.2. SIMPLE DATA EXCHANGE

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

int i;
boost::mpi::status s = world.recv(boost::mpi::any_source, 16, i);
std::cout << s.source() << ": " << i << '\n';

}
else
{

world.send(0, 16, 99);
}

}

So far, all examples have used send() and recv() to transmit an int value. In Example 47.5 a string is trans-
mitted.
send() and recv() can transmit arrays as well as single values. Example 47.5 transmits a string in a char array.
Because send() and recv() support primitive types like char, the char array can be transmitted without any
problems.
Example 47.5 Transmitting an array with send() and recv()

#include <boost/mpi.hpp>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

char buffer[14];
world.recv(boost::mpi::any_source, 16, buffer, 13);
buffer[13] = '\0';
std::cout << buffer << '\n';

}
else
{

const char *c = "Hello, world!";
world.send(0, 16, c, 13);

}
}

send() takes a pointer to the string as its third parameter and the size of the string as its fourth parameter. The
third parameter passed to recv() is a pointer to an array to store the received data. The fourth parameter tells
recv() how many chars should be received and stored in buffer. Example 47.5 writes Hello, world! to the
standard output stream.
Example 47.6 Transmitting a string with send() and recv()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

std::string s;
world.recv(boost::mpi::any_source, 16, s);

230

CHAPTER 47. BOOST.MPI 47.3. ASYNCHRONOUS DATA EXCHANGE

std::cout << s << '\n';
}
else
{

std::string s = "Hello, world!";
world.send(0, 16, s);

}
}

Even though Boost.MPI supports only primitive types, that doesn’t mean it’s impossible to transmit objects of
non-primitive types. Boost.MPI works together with Boost.Serialization. Objects that can be serialized according
to the rules of Boost.Serialization can be transmitted with Boost.MPI.
Example 47.6 transmits “Hello, world!” This time the value transmitted is not a char array but a std::string.
Boost.Serialization provides the header file boost/serialization/string.hpp, which only needs to be
included to make std::string serializable.
If you want to transmit objects of user-defined types, see Chapter 64.

47.3 Asynchronous data exchange
In addition to the blocking functions send() and recv(), Boost.MPI also supports asynchronous data exchange
with the member functions isend() and irecv(). The names start with an i to indicate that the functions return
immediately.
Example 47.7 Receiving data asynchronously with irecv()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

std::string s;
boost::mpi::request r = world.irecv(boost::mpi::any_source, 16, s);
if (r.test())

std::cout << s << '\n';
else

r.cancel();
}
else
{

std::string s = "Hello, world!";
world.send(0, 16, s);

}
}

Example 47.7 uses the blocking function send() to send the string “Hello, world!” However, data is received
with the asynchronous function irecv(). This member function expects the same parameters as recv(). The
difference is that there is no guarantee that data has been received in s when irecv() returns.
irecv() returns an object of type boost::mpi::request. You can call test() to check whether data has
been received. This member function returns a bool. You can call test() as often as you like. Because irecv()
is an asynchronous member function, it is possible that the first call will return false and the second true. This
would mean that the asynchronous operation was completed between the two calls.
Example 47.7 calls test() only once. If data has been received in s, the variable is written to the standard out-
put stream. If no data has been received, the asynchronous operation is canceled with cancel().
If you run Example 47.7 multiple times, sometimes Hello, world! is displayed and sometimes there is no
output. The outcome depends on whether data is received before test() is called.

231

CHAPTER 47. BOOST.MPI 47.4. COLLECTIVE DATA EXCHANGE

You can call test() on boost::mpi::request multiple times to detect when an asynchronous operation is
complete. However, you can also call the blocking function boost::mpi::wait_all() as in Example 47.8.
boost::mpi::wait_all() is a blocking function, but the advantage is that it can wait for multiple asynchronous
operations to complete. boost::mpi::wait_all() returns when all asynchronous operations it is waiting for
have been completed.
Example 47.8 Waiting for multiple asynchronous operations with wait_all()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

boost::mpi::request requests[2];
std::string s[2];
requests[0] = world.irecv(1, 16, s[0]);
requests[1] = world.irecv(2, 16, s[1]);
boost::mpi::wait_all(requests, requests + 2);
std::cout << s[0] << "; " << s[1] << '\n';

}
else if (world.rank() == 1)
{

std::string s = "Hello, world!";
world.send(0, 16, s);

}
else if (world.rank() == 2)
{

std::string s = "Hello, moon!";
world.send(0, 16, s);

}
}

In Example 47.8, the process with rank 1 sends “Hello, world!” and the process with rank 2 “Hello, moon!”
Since the order in which data is received doesn’t matter, the process with rank 0 calls irecv(). Since the pro-
gram will only generate output when all asynchronous operations have been completed and all data has been re-
ceived, the return values of type boost::mpi::request are passed to boost::mpi::wait_all(). Because
boost::mpi::wait_all() expects two iterators, the objects of type boost::mpi::request are stored in an
array. The begin and end iterators are passed to boost::mpi::wait_all().
Boost.MPI provides additional functions you can use to wait for the completion of asynchronous operations.
boost::mpi::wait_any() returns when exactly one asynchronous operation is complete, and boost::mpi:
:wait_some() returns when at least one asynchronous operation has been completed. Both functions return a
std::pair that indicates which operation or operations are complete.
boost::mpi::test_all(), boost::mpi::test_any(), and boost::mpi::test_some() test the status
of multiple asynchronous operations with a single call. These functions are non-blocking and return immediately.

47.4 Collective Data Exchange
The functions introduced so far share a one-to-one relationship: that is, one process sends and one process re-
ceives. The link is established through a tag. This section introduces functions that are called with the same pa-
rameters in multiple processes but execute different operations. For one process the function might send data, for
another process it might receive data. These functions are called collective operations.
Example 47.9 Receiving data from multiple processes with gather()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <vector>

232

CHAPTER 47. BOOST.MPI 47.4. COLLECTIVE DATA EXCHANGE

#include <string>
#include <iterator>
#include <algorithm>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
if (world.rank() == 0)
{

std::vector<std::string> v;
boost::mpi::gather<std::string>(world, "", v, 0);
std::ostream_iterator<std::string> out{std::cout, "\n"};
std::copy(v.begin(), v.end(), out);

}
else if (world.rank() == 1)
{

boost::mpi::gather(world, std::string{"Hello, world!"}, 0);
}
else if (world.rank() == 2)
{

boost::mpi::gather(world, std::string{"Hello, moon!"}, 0);
}

}

Example 47.9 calls the function boost::mpi::gather() in multiple processes. Whether the function sends or
receives depends on the parameters.
The processes with the ranks 1 and 2 use boost::mpi::gather() to send data. They pass, as parameters, the
data being sent – the strings “Hello, world!” and “Hello, moon!” – and the rank of the process the data should be
transmitted to. Since boost::mpi::gather() isn’t a member function, the communicator world also has to
be passed.
The process with rank 0 calls boost::mpi::gather() to receive data. Since the data has to be stored some-
where, an object of type std::vector<std::string> is passed. Please note that you have to use this type with boost:
:mpi::gather(). No other containers or string types are supported.
The process with rank 0 has to pass the same parameters as the processes with rank 1 and 2. That’s why the pro-
cess with rank 0 also passes world, a string to send, and 0 to boost::mpi::gather().
If you start Example 47.9 with three processes, Hello, world! and Hello, moon! are displayed. If you look
at the output carefully, you’ll notice that an empty line is written first. The first line is the empty string the pro-
cess with rank 0 passes to boost::mpi::gather(). There are three strings in v which were received from the
processes with the ranks 0, 1 and 2. The indexes of the elements in the vector correspond to the ranks of the pro-
cesses. If you run the example multiple times, you’ll always get an empty string as a first element in the vector,
“Hello, world!” as the second element and “Hello, moon!” as the third one.
Please note that you must not run Example 47.9 with more than three processes. If you start mpiexec with, for
example, -n 4, no data is displayed. The program will hang and will have to be aborted with CTRL+C.
Collective operations must be executed for all processes. If your program calls a function such as boost::mpi:
:gather(), you have to make sure that the function is called in all processes. Otherwise it’s a violation of the
MPI standard. Because a function like boost::mpi::gather() has to be called by all processes, the call is
usually not different per process, as in Example 47.9. Compare the previous example with Example 47.10, which
does the same thing.
Example 47.10 Collecting data from all processes with gather()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <vector>
#include <string>
#include <iterator>
#include <algorithm>
#include <iostream>

int main(int argc, char *argv[])
{

233

CHAPTER 47. BOOST.MPI 47.4. COLLECTIVE DATA EXCHANGE

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
std::string s;
if (world.rank() == 1)

s = "Hello, world!";
else if (world.rank() == 2)

s = "Hello, moon!";
std::vector<std::string> v;
boost::mpi::gather(world, s, v, 0);
std::ostream_iterator<std::string> out{std::cout, "\n"};
std::copy(v.begin(), v.end(), out);

}

You call functions for collective operations in all processes. Usually the functions are defined in a way that it’s
clear which operation has to be executed, even if all processes pass the same parameters.
Example 47.10 uses boost::mpi::gather(), which gathers data. The data is gathered in the process whose
rank is passed as the last parameter to boost::mpi::gather(). This process gathers the data it receives from
all processes. The vector to store data is used exclusively by the process that gathers data.
boost::mpi::gather() gathers data from all processes. This includes the process that gathers data. In Exam-
ple 47.10, that is the process with rank 0. This process sends an empty string to itself in s. The empty string is
stored in v. As you’ll see in the following examples, collective operations always include all processes.
You can run Example 47.10 with as many processes as you like because every process calls boost::mpi::gat
her(). If you run the example with three processes, the result will be similar to the previous example.
Example 47.11 Scattering data with scatter() across all processes

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <vector>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
std::vector<std::string> v{"Hello, world!", "Hello, moon!",

"Hello, sun!"};
std::string s;
boost::mpi::scatter(world, v, s, 0);
std::cout << world.rank() << ": " << s << '\n';

}

Example 47.11 introduces the function boost::mpi::scatter(). It does the opposite of boost::mpi::gat
her(). While boost::mpi::gather() gathers data from multiple processes in one process, boost::mpi::
scatter() scatters data from one process across multiple processes.
Example 47.11 scatters the data in v from the process with rank 0 across all processes, including itself. The pro-
cess with rank 0 receives the string “Hello, world!” in s, the process with rank 1 receives “Hello, moon!” in s,
and the process with rank 2 receives “Hello, sun!” in s.
Example 47.12 Sending data to all processes with broadcast()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
std::string s;
if (world.rank() == 0)

s = "Hello, world!";
boost::mpi::broadcast(world, s, 0);

234

CHAPTER 47. BOOST.MPI 47.4. COLLECTIVE DATA EXCHANGE

std::cout << s << '\n';
}

boost::mpi::broadcast() sends data from a process to all processes. The difference between this function
and boost::mpi::scatter() is that the same data is sent to all processes. In Example 47.12, all processes
receive the string “Hello, world!” in s and write Hello, world! to the standard output stream.
Example 47.13 Gathering and analyzing data with reduce()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

std::string min(const std::string &lhs, const std::string &rhs)
{

return lhs.size() < rhs.size() ? lhs : rhs;
}

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
std::string s;
if (world.rank() == 0)

s = "Hello, world!";
else if (world.rank() == 1)

s = "Hello, moon!";
else if (world.rank() == 2)

s = "Hello, sun!";
std::string result;
boost::mpi::reduce(world, s, result, min, 0);
if (world.rank() == 0)

std::cout << result << '\n';
}

boost::mpi::reduce() gathers data from multiple processes like boost::mpi::gather(). However, the
data isn’t stored in a vector. boost::mpi::reduce() expects a function or function object, which it will use to
analyze the data.
If you run Example 47.13 with three processes, the process with rank 0 receives the string “Hello, sun!” in res
ult. The call to boost::mpi::reduce() gathers and analyzes the strings that all of the processes pass to it.
They are analyzed using the function min(), which is passed as the fourth parameter to boost::mpi::red
uce(). min() compares two strings and returns the shorter one.
If you run Example 47.13 with more than three processes, an empty string is displayed because all processes with
a rank greater than 2 will pass an empty string to boost::mpi::reduce(). The empty string will be displayed
because it is shorter than “Hello, sun!”
Example 47.14 Gathering and analyzing data with all_reduce()

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

std::string min(const std::string &lhs, const std::string &rhs)
{

return lhs.size() < rhs.size() ? lhs : rhs;
}

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
std::string s;
if (world.rank() == 0)

235

CHAPTER 47. BOOST.MPI 47.5. COMMUNICATORS

s = "Hello, world!";
else if (world.rank() == 1)

s = "Hello, moon!";
else if (world.rank() == 2)

s = "Hello, sun!";
std::string result;
boost::mpi::all_reduce(world, s, result, min);
std::cout << world.rank() << ": " << result << '\n';

}

Example 47.14 uses the function boost::mpi::all_reduce(), which gathers and analyzes data like boost:
:mpi::reduce(). The difference between the two functions is that boost::mpi::all_reduce() sends the
result of the analysis to all processes while boost::mpi::reduce() makes the result only available to the pro-
cess whose rank is passed as the last parameter. Thus, no rank is passed to boost::mpi::all_reduce(). If
you run Example 47.14 with three processes, every process writes Hello, sun! to the standard output stream.

47.5 Communicators
All of the examples in this chapter use only one communicator, which links all processes. However, it is possible
to create more communicators to link subsets of processes. This is especially useful for collective operations that
don’t need to be executed by all processes.
Example 47.15 Working with multiple communicators

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
boost::mpi::communicator local = world.split(world.rank() < 2 ? 99 : 100);
std::string s;
if (world.rank() == 0)

s = "Hello, world!";
boost::mpi::broadcast(local, s, 0);
std::cout << world.rank() << ": " << s << '\n';

}

Example 47.15 uses the function boost::mpi::broadcast(). This function sends the string “Hello, world!”
from the process with rank 0 to all processes that are linked to the communicator local. The process with rank 0
has to be linked to that communicator, too.
The communicator local is created by a call to split(). split() is a member function called on the global
communicator world. split() expects an integer to link processes together. All processes that pass the same
integer to split() are linked to the same communicator. The value of the integer passed to split() doesn’t
matter. All that’s important is that all processes that should be linked by a particular communicator pass the same
value.
In Example 47.15, the two processes with the ranks 0 and 1 pass 99 to split(). If the program is started with
more than two processes, the additional processes pass 100. This means the first two processes have one local
communicator and all the other process have another local communicator. Every process is linked to the com-
municator that is returned by split(). Whether there are other processes linked to the same communicator de-
pends on whether other processes passed the same integer to split().
Please note that ranks are always relative to a communicator. The lowest rank is always 0. In Example 47.15, the
process with the rank 0 relative to the global communicator has also the rank 0 relative to its local communicator.
The process with the rank 2 relative to the global communicator has the rank 0 relative to its local communicator.
If you start Example 47.15 with two or more processes, Hello, world! will be displayed twice – once each by
the processes with the ranks 0 and 1 relative to the global communicator. Because s is set to “Hello, world!” only
in the process with the global rank 0, this string is sent through the communicator only to those processes that are

236

CHAPTER 47. BOOST.MPI 47.5. COMMUNICATORS

linked to the same communicator. This is just the process with global rank 1, which is the only other process that
passed 99 to split().
Example 47.16 Grouping processes with group

#include <boost/mpi.hpp>
#include <boost/serialization/string.hpp>
#include <boost/range/irange.hpp>
#include <boost/optional.hpp>
#include <string>
#include <iostream>

int main(int argc, char *argv[])
{

boost::mpi::environment env{argc, argv};
boost::mpi::communicator world;
boost::mpi::group local = world.group();
boost::integer_range<int> r = boost::irange(0, 1);
boost::mpi::group subgroup = local.exclude(r.begin(), r.end());
boost::mpi::communicator others{world, subgroup};
std::string s;
boost::optional<int> rank = subgroup.rank();
if (rank)
{

if (rank == 0)
s = "Hello, world!";

boost::mpi::broadcast(others, s, 0);
}
std::cout << world.rank() << ": " << s << '\n';

}

MPI supports grouping processes. This is done with the help of the class boost::mpi::group. If you call the
member function group() on a communicator, all processes linked to the communicator are returned in an ob-
ject of type boost::mpi::group. You can’t use this object for communication. It can only be used to form a
new group of processes from which a communicator can then be created.
boost::mpi::group provides member functions like include() and exclude(). You pass iterators to in-
clude or exclude processes. include() and exclude() return a new group of type boost::mpi::group.
Example 47.16 passes two iterators to exclude() that refer to an object of type boost::integer_range.
This object represents a range of integers. It is created with the help of the function boost::irange(), which
expects a lower and upper bound. The upper bound is an integer that doesn’t belong to the range. In this exam-
ple, this means that r only includes the integer 0.
The call to exclude() results in subgroup being created, which contains all processes except the one with the
rank 0. This group is then used to create a new communicator others. This is done by passing the global com-
municator world and subgroup to the constructor of boost::mpi::communicator.
Please note that others is a communicator that is empty in the process with rank 0. The process with rank 0
isn’t linked to this communicator, but the variable others still exists in this process. You must be careful not to
use others in this process. Example 47.16 prevents this by calling rank() on subgroup. The member func-
tion returns an empty object of type boost::optional in processes that don’t belong to the group. Other pro-
cesses receive their rank relative to the group.
If rank() returns a rank and no empty object of type boost::optional, boost::mpi::broadcast() is
called. The process with rank 0 sends the string “Hello, world!” to all processes linked to the communicator oth
ers. Please note that the rank is relative to that communicator. The process with the rank 0 relative to others
has the rank 1 relative to the global communicator world.
If you run Example 47.16 with more than two processes, all processes with a global rank greater than 0 will dis-
play Hello, world!.

237

Part XI

Generic Programming

238

The following libraries support generic programming. The libraries can be used without detailed knowledge of
template meta programming.

• Boost.TypeTraits provides functions to check properties of types.

• Boost.EnableIf can be used together with Boost.TypeTraits to, for example, overload functions based on
their return types.

• Boost.Fusion makes it possible to create heterogeneous containers – containers whose elements can have
different types.

239

Chapter 48

Boost.TypeTraits

Types have different properties that generic programming takes advantage of. The Boost.TypeTraits library pro-
vides the tools needed to determine a type’s properties and change them.
Since C++11, some functions provided by Boost.TypeTraits can be found in the standard library. You can access
those functions through the header file type_traits. However, Boost.TypeTraits provides additional func-
tions.
Example 48.1 Determining type categories

#include <boost/type_traits.hpp>
#include <iostream>

using namespace boost;

int main()
{

std::cout.setf(std::ios::boolalpha);
std::cout << is_integral<int>::value << '\n';
std::cout << is_floating_point<int>::value << '\n';
std::cout << is_arithmetic<int>::value << '\n';
std::cout << is_reference<int>::value << '\n';

}

Example 48.1 calls several functions to determine type categories. boost::is_integral checks whether a
type is integral – whether it can store integers. boost::is_floating_point checks whether a type stores
floating point numbers. boost::is_arithmetic checks whether a type supports arithmetic operators. And
boost::is_reference can be used to determine whether a type is a reference.
boost::is_integral and boost::is_floating_point are mutually exclusive. A type either stores an in-
teger or a floating point number. However, boost::is_arithmetic and boost::is_reference can apply
to multiple categories. For example, both integer and floating point types support arithmetic operations.
All functions from Boost.TypeTraits provide a result in value that is either true or false. Example 48.1 out-
puts true for is_integral<int> and is_arithmetic<int> and outputs false for is_floating_point<
int> and is_reference<int>. Because all of these functions are templates, nothing is processed at run time.
The example behaves at run time as though the values true and false were directly used in the code.
In Example 48.1, the result of the various functions is a value of type bool, which can be written directly to stan-
dard output. If the result is to be processed by a function template, it should be forwarded as a type, not as a bool
value.
Example 48.2 boost::true_type and boost::false_type

#include <boost/type_traits.hpp>
#include <iostream>

using namespace boost;

int main()
{

std::cout.setf(std::ios::boolalpha);
std::cout << is_same<is_integral<int>::type, true_type>::value << '\n';
std::cout << is_same<is_floating_point<int>::type, false_type>::value <<

240

http://www.boost.org/libs/type_traits

CHAPTER 48. BOOST.TYPETRAITS

'\n';
std::cout << is_same<is_arithmetic<int>::type, true_type>::value << '\n';
std::cout << is_same<is_reference<int>::type, false_type>::value << '\n';

}

Besides value, functions from Boost.TypeTraits also provide the result in type. While value is a bool value,
type is a type. Just like value, which can only be set to true or false, type can only be set to one of two types:
boost::true_type or boost::false_type. type lets you pass the result of a function as a type to another
function.
Example 48.2 uses another function from Boost.TypeTraits called boost::is_same. This function expects
two types as parameters and checks whether they are the same. To pass the results of boost::is_integral,
boost::is_floating_point, boost::is_arithmetic, and boost::is_reference to boost::is_s
ame, type must be accessed. type is then compared with boost::true_type or boost::false_type. The re-
sults from boost::is_same are then read through value again. Because this is a bool value, it can be written
to standard output.
Example 48.3 Checking type properties with Boost.TypeTraits

#include <boost/type_traits.hpp>
#include <iostream>

using namespace boost;

int main()
{

std::cout.setf(std::ios::boolalpha);
std::cout << has_plus<int>::value << '\n';
std::cout << has_pre_increment<int>::value << '\n';
std::cout << has_trivial_copy<int>::value << '\n';
std::cout << has_virtual_destructor<int>::value << '\n';

}

Example 48.3 introduces functions that check properties of types. boost::has_plus checks whether a type
supports the operator operator+ and whether two objects of the same type can be concatenated. boost::has
_pre_increment checks whether a type supports the pre-increment operator operator++. boost::has_tr
ivial_copy checks whether a type has a trivial copy constructor. And boost::has_virtual_destructor
checks whether a type has a virtual destructor.
Example 48.3 displays true three times and false once.
Example 48.4 Changing type properties with Boost.TypeTraits

#include <boost/type_traits.hpp>
#include <iostream>

using namespace boost;

int main()
{

std::cout.setf(std::ios::boolalpha);
std::cout << is_const<add_const<int>::type>::value << '\n';
std::cout << is_same<remove_pointer<int*>::type, int>::value << '\n';
std::cout << is_same<make_unsigned<int>::type, unsigned int>::value <<

'\n';
std::cout << is_same<add_rvalue_reference<int>::type, int&&>::value <<

'\n';
}

Example 48.4 illustrates how type properties can be changed. boost::add_const adds const to a type. If the
type is already constant, nothing changes. The code compiles without problems, and the type remains constant.
boost::remove_pointer removes the asterisk from a pointer type and returns the type the pointer refers to.
boost::make_unsigned turns a type with a sign into a type without a sign. And boost::add_rvalue_refe
rence transforms a type into a rvalue reference.
Example 48.4 writes true four times to standard output.

241

Chapter 49

Boost.EnableIf

Boost.EnableIf makes it possible to disable overloaded function templates or specialized class templates. Dis-
abling means that the compiler ignores the respective templates. This helps to prevent ambiguous scenarios in
which the compiler doesn’t know which overloaded function template to use. It also makes it easier to define
templates that can be used not just for a certain type but for a group of types.
Since C++11, Boost.EnableIf has been part of the standard library. You can call the functions introduced in this
chapter without using a Boost library; just include the header file type_traits.
Example 49.1 defines the function template create(), which returns an object of the type passed as a template
parameter. The object is initialized in create(), which accepts no parameters. The signatures of the two cre
ate() functions don’t differ. In that respect create() isn’t an overloaded function. The compiler would report
an error if Boost.EnableIf didn’t enable one function and disable the other.
Boost.EnableIf provides the class boost::enable_if, which is a template that expects two parameters. The
first parameter is a condition. The second parameter is the type of the boost::enable_if expression if the
condition is true. The trick is that this type doesn’t exist if the condition is false, in which case the boost::ena
ble_if expression is invalid C++ code. However, when it comes to templates, the compiler doesn’t complain
about invalid code. Instead it ignores the template and searches for another one that might fit. This concept is
known as SFINAE which stands for “Substitution Failure Is Not An Error.”
In Example 49.1 both conditions in the boost::enable_if expressions use the class std::is_same. This
class is defined in the C++11 standard library and allows you to compare two types. Because such a comparison
is either true or false, it’s sufficient to use std::is_same to define a condition.
Example 49.1 Overloading functions with boost::enable_if on their return value

#include <boost/utility/enable_if.hpp>
#include <type_traits>
#include <string>
#include <iostream>

template <typename T>
typename boost::enable_if<std::is_same<T, int>, T>::type create()
{

return 1;
}

template <typename T>
typename boost::enable_if<std::is_same<T, std::string>, T>::type create()
{

return "Boost";
}

int main()
{

std::cout << create<std::string>() << '\n';
}

If a condition is true, the respective create() function should return an object of the type that was passed to
create() as a template parameter. That’s why T is passed as a second parameter to boost::enable_if. The
entire boost::enable_if expression is replaced by T if the condition is true. In Example 49.1 the compiler

242

http://www.boost.org/libs/utility/enable_if.html

CHAPTER 49. BOOST.ENABLEIF

sees either a function that returns an int or a function that returns a std::string. If create() is called with
any other type than int or std::string, the compiler will report an error.
Example 49.1 displays Boost.
Example 49.2 uses boost::enable_if to specialize a function for a group of types. The function is called
print() and expects one parameter. It can be overloaded, although overloading requires you to use a concrete
type. To do the same for a group of types like short, int or long, you can define an appropriate condition using
boost::enable_if. Example 49.2 uses std::is_integral to do so. The second print() function is over-
loaded with std::is_floating_point for all floating point numbers.
Example 49.2 Specializing functions for a group of types with boost::enable_if

#include <boost/utility/enable_if.hpp>
#include <type_traits>
#include <iostream>

template <typename T>
void print(typename boost::enable_if<std::is_integral<T>, T>::type i)
{

std::cout << "Integral: " << i << '\n';
}

template <typename T>
void print(typename boost::enable_if<std::is_floating_point<T>, T>::type f)
{

std::cout << "Floating point: " << f << '\n';
}

int main()
{

print<short>(1);
print<long>(2);
print<double>(3.14);

}

243

Chapter 50

Boost.Fusion

The standard library provides numerous containers that have one thing in common: They are homogeneous. That
is, containers from the standard library can only store elements of one type. A vector of the type std::vector<int>
can only store int values, and a vector of type std::vector<std::string> can only store strings.
Boost.Fusion makes it possible to create heterogeneous containers. For example, you can create a vector whose
first element is an int and whose second element is a string. In addition, Boost.Fusion provides algorithms to pro-
cess heterogeneous containers. You can think of Boost.Fusion as the standard library for heterogeneous contain-
ers.
Strictly speaking, since C++11, the standard library has provided a heterogeneous container, std::tuple. You
can use different types for the values stored in a tuple. boost:fusion::tuple in Boost.Fusion is a similar
type. While the standard library doesn’t have much more to offer, tuples are just the starting place for Boost.Fusion.
Example 50.1 defines a tuple consisting of an int, a std::string, a bool, and a double. The tuple is based on
boost:fusion::tuple. In Example 50.1, the tuple is then instantiated, initialized, and the various elements
are retrieved with boost::fusion::get() and written to standard output. The function boost::fusion::
get() is similar to std::get(), which accesses elements in std::tuple.
Fusion tuples don’t differ from tuples from the standard library. Thus it’s no surprise that Boost.Fusion provides
a function boost::fusion::make_tuple(), which works like std::make_tuple(). However, Boost.Fusion
provides additional functions that go beyond what is offered in the standard library.
Example 50.1 Processing Fusion tuples

#include <boost/fusion/tuple.hpp>
#include <string>
#include <iostream>

using namespace boost::fusion;

int main()
{

typedef tuple<int, std::string, bool, double> tuple_type;
tuple_type t{10, "Boost", true, 3.14};
std::cout << get<0>(t) << '\n';
std::cout << get<1>(t) << '\n';
std::cout << std::boolalpha << get<2>(t) << '\n';
std::cout << get<3>(t) << '\n';

}

Example 50.2 introduces the algorithm boost::fusion::for_each(), which iterates over a Fusion container.
The function is used here to write the values in the tuple t to standard output.
Example 50.2 Iterating over a tuple with boost::fusion::for_each()

#include <boost/fusion/tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <string>
#include <iostream>

using namespace boost::fusion;

244

http://www.boost.org/libs/fusion

CHAPTER 50. BOOST.FUSION

struct print
{

template <typename T>
void operator()(const T &t) const
{

std::cout << std::boolalpha << t << '\n';
}

};

int main()
{

typedef tuple<int, std::string, bool, double> tuple_type;
tuple_type t{10, "Boost", true, 3.14};
for_each(t, print{});

}

boost::fusion::for_each() is designed to work like std::for_each(). While std::for_each() only
iterates over homogeneous containers, boost::fusion::for_each() works with heterogeneous containers.
You pass a container, not an iterator, to boost::fusion::for_each(). If you don’t want to iterate over all
elements in a container, you can use a view.
Example 50.3 Filtering a Fusion container with boost::fusion::filter_view

#include <boost/fusion/tuple.hpp>
#include <boost/fusion/view.hpp>
#include <boost/fusion/algorithm.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/arg.hpp>
#include <string>
#include <iostream>

using namespace boost::fusion;

struct print
{

template <typename T>
void operator()(const T &t) const
{

std::cout << std::boolalpha << t << '\n';
}

};

int main()
{

typedef tuple<int, std::string, bool, double> tuple_type;
tuple_type t{10, "Boost", true, 3.14};
filter_view<tuple_type, boost::is_integral<boost::mpl::arg<1>>> v{t};
for_each(v, print{});

}

Boost.Fusion provides views, which act like containers but don’t store data. With views, data in a container
can be accessed differently. Views are similar to adaptors from Boost.Range. However, while adaptors from
Boost.Range can be applied to only one container, views from Boost.Fusion can span data from multiple con-
tainers.
Example 50.3 uses the class boost::fusion::filter_view to filter the tuple t. The filter directs boost::
fusion::for_each() to only write elements based on an integral type.
boost::fusion::filter_view expects as a first template parameter the type of the container to filter. The
second template parameter must be a predicate to filter elements. The predicate must filter the elements based on
their type.
The library is called Boost.Fusion because it combines two worlds: C++ programs process values at run time and
types at compile time. For developers, values at run time are usually more important. Most tools from the stan-
dard library process values at run time. To process types at compile time, template meta programming is used.
While values are processed depending on other values at run time, types are processed depending on other types

245

CHAPTER 50. BOOST.FUSION

at compile time. Boost.Fusion lets you process values depending on types.
The second template parameter passed to boost::fusion::filter_view is a predicate, which will be applied
to every type in the tuple. The predicate expects a type as a parameter and returns true if the type should be part
of the view. If false is returned, the type is filtered out.
Example 50.3 uses the class boost::is_integral from Boost.TypeTraits. boost::is_integral is a tem-
plate that checks whether a type is integral. Because the template parameter has to be passed to boost::fus
ion::filter_view, a placeholder from Boost.MPL, boost::mpl::arg<1>, is used to create a lambda func-
tion. boost::mpl::arg<1> is similar to boost::phoenix::place_holders::arg1 from Boost.Phoenix.
In Example 50.3, the view v will contain only the int and bool elements from the tuple, and therefore, the exam-
ple will write 10 and true to standard output.
Example 50.4 Accessing elements in Fusion containers with iterators

#include <boost/fusion/tuple.hpp>
#include <boost/fusion/iterator.hpp>
#include <boost/mpl/int.hpp>
#include <string>
#include <iostream>

using namespace boost::fusion;

int main()
{

typedef tuple<int, std::string, bool, double> tuple_type;
tuple_type t{10, "Boost", true, 3.14};
auto it = begin(t);
std::cout << *it << '\n';
auto it2 = advance<boost::mpl::int_<2>>(it);
std::cout << std::boolalpha << *it2 << '\n';

}

After seeing boost::fusion::tuple and boost::fusion::for_each(), it shouldn’t come as a surprise to
find iterators in Example 50.4. Boost.Fusion provides several free-standing functions, such as boost::fusion:
:begin() and boost::fusion::advance(), that work like the identically named functions from the standard
library.
The number of steps the iterator is to be incremented is passed to boost::fusion::advance() as a template
parameter. The example again uses boost::mpl::int_ from Boost.MPL.
boost::fusion::advance() returns an iterator of a different type from the one that was passed to the func-
tion. That’s why Example 50.4 uses a second iterator it2. You can’t assign the return value from boost::
fusion::advance() to the first iterator it. Example 50.4 writes 10 and true to standard output.
In addition to the functions introduced in the example, Boost.Fusion provides other functions that work with it-
erators. These include the following: boost::fusion::end(), boost::fusion::distance(), boost::
fusion::next() and boost::fusion::prior().
So far we’ve only seen one heterogeneous container, boost::fusion::tuple. Example 50.5 introduces an-
other container, boost::fusion::vector.
boost::fusion::vector is a vector: elements are accessed with indexes. Access is not implemented using
the operator operator[]. Instead, it’s implemented using boost::fusion::at(), a free-standing function.
The index is passed as a template parameter wrapped with boost::mpl::int_.
Example 50.5 A heterogeneous vector with boost::fusion::vector

#include <boost/fusion/container.hpp>
#include <boost/fusion/sequence.hpp>
#include <boost/mpl/int.hpp>
#include <string>
#include <iostream>

using namespace boost::fusion;

int main()
{

typedef vector<int, std::string, bool, double> vector_type;
vector_type v{10, "Boost", true, 3.14};
std::cout << at<boost::mpl::int_<0>>(v) << '\n';

246

CHAPTER 50. BOOST.FUSION

auto v2 = push_back(v, 'X');
std::cout << size(v) << '\n';
std::cout << size(v2) << '\n';
std::cout << back(v2) << '\n';

}

This example adds a new element of type char to the vector. This is done with the free-standing function boost:
:fusion::push_back(). Two parameters are passed to boost::fusion::push_back(): the vector to add
the element to and the value to add.
boost::fusion::push_back() returns a new vector. The vector v isn’t changed. The new vector is a copy of
the original vector with the added element.
This example gets the number of elements in the vectors v and v2 with boost::fusion::size() and writes
both values to standard output. The program displays 4 and 5. It then calls boost::fusion::back() to get
and write the last element in v2 to standard output, in this case the value is X.
If you look more closely at Example 50.5, you will notice that there is no difference between boost::fusion:
:tuple and boost::fusion::vector; they are the same. Thus, Example 50.5 will also work with boost::
fusion::tuple.
Boost.Fusion provides additional heterogeneous containers, including: boost::fusion::deque, boost::
fusion::list and boost::fusion::set. Example 50.6 introduces boost::fusion::map, a container for
key/value pairs.
Example 50.6 creates a heterogeneous map with boost::fusion::map(). The map’s type is boost::fus
ion::map, which isn’t written out in the example thanks to the keyword auto.
Example 50.6 A heterogeneous map with boost::fusion::map

#include <boost/fusion/container.hpp>
#include <boost/fusion/sequence.hpp>
#include <boost/fusion/algorithm.hpp>
#include <string>
#include <iostream>

using namespace boost::fusion;

int main()
{

auto m = make_map<int, std::string, bool, double>("Boost", 10, 3.14, true);
if (has_key<std::string>(m))

std::cout << at_key<std::string>(m) << '\n';
auto m2 = erase_key<std::string>(m);
auto m3 = push_back(m2, make_pair<float>('X'));
std::cout << std::boolalpha << has_key<std::string>(m3) << '\n';

}

A map of type boost::fusion::map stores key/value pairs like std::map does. However, the keys in the
Fusion map are types. A key/value pair consists of a type and a value mapped to that type. The value may be a
different type than the key. In Example 50.6, the string “Boost” is mapped to the key int.
After the map has been created, boost::fusion::has_key() is called to check whether a key std::string
exists. Then, boost::fusion::at_key() is called to get the value mapped to that key. Because the number
10 is mapped to std::string, it is written to standard output.
The key/value pair is then erased with boost::fusion::erase_key(). This doesn’t change the map m. boost:
:fusion::erase_key() returns a new map which is missing the erased key/value pair.
The call to boost::fusion::push_back() adds a new key/value pair to the map. The key is float and the
value is “X”. boost::fusion::make_pair() is called to create the new key/value pair. This function is simi-
lar to std::make_pair().
Finally, boost::fusion::has_key() is called again to check whether the map has a key std::string. Be-
cause it was erased, false is returned.
Please note that you don’t need to call boost::fusion::has_key() to check whether a key exists before you
call boost::fusion::at_key(). If a key is passed to boost::fusion::at_key() that doesn’t exist in the
map, you get a compiler error.
Boost.Fusion provides several macros that let you use structures as Fusion containers. This is possible because
structures can act as heterogeneous containers. Example 50.7 defines a structure which can be used as a Fusion

247

CHAPTER 50. BOOST.FUSION

container thanks to the macro BOOST_FUSION_ADAPT_STRUCT. This makes it possible to use the structure with
functions like boost::fusion::at() or boost::fusion::back().
Example 50.7 Fusion adaptors for structures

#include <boost/fusion/adapted.hpp>
#include <boost/fusion/sequence.hpp>
#include <boost/mpl/int.hpp>
#include <iostream>

struct strct
{

int i;
double d;

};

BOOST_FUSION_ADAPT_STRUCT(strct,
(int, i)
(double, d)

)

using namespace boost::fusion;

int main()
{

strct s = {10, 3.14};
std::cout << at<boost::mpl::int_<0>>(s) << '\n';
std::cout << back(s) << '\n';

}

Boost.Fusion supports structures such as std::pair and boost::tuple without having to use macros. You
just need to include the header file boost/fusion/adapted.hpp (see Example 50.8).
Example 50.8 Fusion support for std::pair

#include <boost/fusion/adapted.hpp>
#include <boost/fusion/sequence.hpp>
#include <boost/mpl/int.hpp>
#include <utility>
#include <iostream>

using namespace boost::fusion;

int main()
{

auto p = std::make_pair(10, 3.14);
std::cout << at<boost::mpl::int_<0>>(p) << '\n';
std::cout << back(p) << '\n';

}

248

Part XII

Language Extensions

249

The following libraries extend the programming language C++.

• Boost.Coroutine makes it possible to use coroutines in C++ – something other programming languages
usually support with the keyword yield.

• Boost.Foreach provides a range-based for loop, which was added to the language with C++11.

• Boost.Parameter lets you pass parameters as name/value pairs and in any order – as is allowed in Python,
for example.

• Boost.Conversion provides two cast operators that replace dynamic_cast and allow you to differentiate
between a downcast and a cross cast.

250

Chapter 51

Boost.Coroutine

With Boost.Coroutine it is possible to use coroutines in C++. Coroutines are a feature of other programming lan-
guages, which often use the keyword yield for coroutines. In these programming languages, yield can be used
like return. However, when yield is used, the function remembers the location, and if the function is called
again, execution continues from that location.
C++ doesn’t define a keyword yield. However, with Boost.Coroutine it is possible to return from functions and
continue later from the same location. The Boost.Asio library also uses Boost.Coroutine and benefits from corou-
tines.
There are two versions of Boost.Coroutine. This chapter introduces the second version, which is the current ver-
sion. This version has been available since Boost 1.55.0 and replaces the first one.
Example 51.1 defines a function, cooperative(), which is called from main() as a coroutine. cooperat
ive() returns to main() early and is called a second time. On the second call, it continues from where it left
off.
To use cooperative() as a coroutine, the types pull_type and push_type are used. These types are provided by
boost::coroutines::coroutine, which is a template that is instantiated with void in Example 51.1.
To use coroutines, you need pull_type and push_type. One of these types will be used to create an object that will
be initialized with the function you want to use as a coroutine. The other type will be the first parameter of the
coroutine function.
Example 51.1 creates an object named source of type pull_type in main(). cooperative() is passed to the
constructor. push_type is used as the sole parameter in the signature of cooperative().
Example 51.1 Using coroutines
#include <boost/coroutine/all.hpp>
#include <iostream>

using namespace boost::coroutines;

void cooperative(coroutine<void>::push_type &sink)
{

std::cout << "Hello";
sink();
std::cout << "world";

}

int main()
{

coroutine<void>::pull_type source{cooperative};
std::cout << ", ";
source();
std::cout << "!\n";

}

When source is created, the function cooperative(), which is passed to the constructor, is immediately called
as a coroutine. This happens because source is based on pull_type. If source was based on push_type, the con-
structor wouldn’t call cooperative() as a coroutine.
cooperative() writes Hello to standard output. Afterwards, the function accesses sink as if it were a func-
tion. This is possible because push_type overloads operator(). While source in main() represents the corou-

251

http://www.boost.org/libs/coroutine

CHAPTER 51. BOOST.COROUTINE

tine cooperative(), sink in cooperative() represents the function main(). Calling sink makes coopera
tive() return, and main() continues from where cooperative() was called and writes a comma to standard
output.
Then, main() calls source as if it were a function. Again, this is possible because of the overloaded operato
r(). This time, cooperative() continues from the point where it left off and writes world to standard output.
Because there is no other code in cooperative(), the coroutine ends. It returns to main(), which writes an
exclamation mark to standard output.
The result is that Example 51.1 displays Hello, world!
You can think of coroutines as cooperative threads. To a certain extent, the functions main() and cooperat
ive() run concurrently. Code is executed in turns in main() and cooperative(). Instructions inside each
function are executed sequentially. Thanks to coroutines, a function doesn’t need to return before another func-
tion can be executed.
Example 51.2 Returning a value from a coroutine
#include <boost/coroutine/all.hpp>
#include <functional>
#include <iostream>

using boost::coroutines::coroutine;

void cooperative(coroutine<int>::push_type &sink, int i)
{

int j = i;
sink(++j);
sink(++j);
std::cout << "end\n";

}

int main()
{

using std::placeholders::_1;
coroutine<int>::pull_type source{std::bind(cooperative, _1, 0)};
std::cout << source.get() << '\n';
source();
std::cout << source.get() << '\n';
source();

}

Example 51.2 is similar to the previous example. This time the template boost::coroutines::coroutine is
instantiated with int. This makes it possible to return an int from the coroutine to the caller.
The direction the int value is passed depends on where pull_type and push_type are used. The example uses
pull_type to instantiate an object in main(). cooperative() has access to an object of type push_type. push_type
sends a value, and pull_type receives a value; thus, the direction of the data transfer is set.
cooperative() calls sink, with a parameter of type int. This parameter is required because the coroutine was
instantiated with the data type int. The value passed to sink is received from source in main() by using the
member function get(), which is provided by pull_type.
Example 51.2 also illustrates how a function with multiple parameters can be used as a coroutine. cooperat
ive() has an additional parameter of type int, which can’t be passed directly to the constructor of pull_type. The
example uses std::bind() to link the function with pull_type.
The example writes 1 and 2 followed by end to standard output.
Example 51.3 Passing two values to a coroutine
#include <boost/coroutine/all.hpp>
#include <tuple>
#include <string>
#include <iostream>

using boost::coroutines::coroutine;

void cooperative(coroutine<std::tuple<int, std::string>>::pull_type &source)
{

auto args = source.get();
std::cout << std::get<0>(args) << " " << std::get<1>(args) << '\n';

252

CHAPTER 51. BOOST.COROUTINE

source();
args = source.get();
std::cout << std::get<0>(args) << " " << std::get<1>(args) << '\n';

}

int main()
{

coroutine<std::tuple<int, std::string>>::push_type sink{cooperative};
sink(std::make_tuple(0, "aaa"));
sink(std::make_tuple(1, "bbb"));
std::cout << "end\n";

}

Example 51.3 uses push_type in main() and pull_type in cooperative(), which means data is transferred
from the caller to the coroutine.
This example illustrates how multiple values can be passed. Boost.Coroutine doesn’t support passing multiple
values, so a tuple must be used. You need to pack multiple values into a tuple or another structure.
Example 51.3 displays 0 aaa, 1 bbb, and end.
A coroutine returns immediately when an exception is thrown. The exception is transported to the caller of the
coroutine where it can be caught. Thus, exceptions are no different than with regular function calls.
Example 51.4 shows how this works. This example will write the string error to standard output.
Example 51.4 Coroutines and exceptions

#include <boost/coroutine/all.hpp>
#include <stdexcept>
#include <iostream>

using boost::coroutines::coroutine;

void cooperative(coroutine<void>::push_type &sink)
{

sink();
throw std::runtime_error("error");

}

int main()
{

coroutine<void>::pull_type source{cooperative};
try
{

source();
}
catch (const std::runtime_error &e)
{

std::cerr << e.what() << '\n';
}

}

253

Chapter 52

Boost.Foreach

Boost.Foreach provides a macro that simulates the range-based for loop from C++11. You can use the macro
BOOST_FOREACH, defined in boost/foreach.hpp, to iterate over a sequence without using iterators. If your
development environment supports C++11, you can ignore Boost.Foreach.
Example 52.1 Using BOOST_FOREACH and BOOST_REVERSE_FOREACH

#include <boost/foreach.hpp>
#include <array>
#include <iostream>

int main()
{

std::array<int, 4> a{{0, 1, 2, 3}};

BOOST_FOREACH(int &i, a)
i *= i;

BOOST_REVERSE_FOREACH(int i, a)
{

std::cout << i << '\n';
}

}

BOOST_FOREACH expects two parameters. The first parameter is a variable or reference, and the second is a se-
quence. The type of the first parameter needs to match the type of the elements in the sequence.
Anything offering iterators, such as containers from the standard library, classifies as a sequence. Boost.Foreach
uses Boost.Range instead of directly accessing the member functions begin() and end(). However, because
Boost.Range is based on iterators, anything providing iterators is compatible with BOOST_FOREACH.
Example 52.1 iterates over an array of type std::array with BOOST_FOREACH. The first parameter passed is a
reference so that you can both read and modify the elements in the array. In Example 52.1, the first loop multi-
plies each number by itself.
The second loop uses the macro BOOST_REVERSE_FOREACH, which works the same as BOOST_FOREACH, but it-
erates backwards over a sequence. The loop writes the numbers 9, 4, 1, and 0 in that order to the standard output
stream.
As usual, curly brackets can be omitted if the block only consists of one statement.
Please note that you should not use operations that invalidate the iterator inside the loop. For example, elements
should not be added or removed while iterating over a vector. BOOST_FOREACH and BOOST_REVERSE_FOREACH
require iterators to be valid throughout the whole iteration.

254

http://www.boost.org/libs/foreach

Chapter 53

Boost.Parameter

Boost.Parameter makes it possible to pass parameters as key/value pairs. In addition to supporting function pa-
rameters, the library also supports template parameters. Boost.Parameter is especially useful if you are using long
parameter lists, and the order and meaning of parameters is difficult to remember. Key/value pairs make it possi-
ble to pass parameters in any order. Because every value is passed with a key, the meaning of the various values
is also clearer.
Example 53.1 defines a function complicated(), which expects five parameters. The parameters may be passed
in any order. Boost.Parameter provides the macro BOOST_PARAMETER_FUNCTION to define such a function.
Before BOOST_PARAMETER_FUNCTION can be used, the parameters for the key/value pairs must be defined. This
is done with the macro BOOST_PARAMETER_NAME, which is just passed a parameter name. The example uses
BOOST_PARAMETER_NAME five times to define the parameter names a, b, c, d, and e.
Please note that the parameter names are automatically defined in the namespace tag. This should avoid clashes
with identically named definitions in a program.
After the parameter names have been defined, BOOST_PARAMETER_FUNCTION is used to define the function com
plicated(). The first parameter passed to BOOST_PARAMETER_FUNCTION is the type of the return value. This
is void in the example. Please note that the type must be wrapped in parentheses – the first parameter is (void).
The second parameter is the name of the function being defined. The third parameter is the namespace containing
the parameter names. In the fourth parameter, the parameter names are accessed to further specify them.
Example 53.1 Function parameters as key/value pairs

#include <boost/parameter.hpp>
#include <string>
#include <iostream>
#include <ios>

BOOST_PARAMETER_NAME(a)
BOOST_PARAMETER_NAME(b)
BOOST_PARAMETER_NAME(c)
BOOST_PARAMETER_NAME(d)
BOOST_PARAMETER_NAME(e)

BOOST_PARAMETER_FUNCTION(
(void),
complicated,
tag,
(required

(a, (int))
(b, (char))
(c, (double))
(d, (std::string))
(e, *)

)
)
{

std::cout.setf(std::ios::boolalpha);
std::cout << a << '\n';
std::cout << b << '\n';

255

http://www.boost.org/libs/parameter

CHAPTER 53. BOOST.PARAMETER

std::cout << c << '\n';
std::cout << d << '\n';
std::cout << e << '\n';

}

int main()
{

complicated(_c = 3.14, _a = 1, _d = "Boost", _b = 'B', _e = true);
}

In Example 53.1 the fourth parameter starts with required, which is a keyword that makes the parameters that
follow mandatory. required is followed by one or more pairs consisting of a parameter name and a type. It is
important to wrap the type in parentheses.
Various types are used for the parameters a, b, c, and d. For example, a can be used to pass an int value to com
plicated(). No type is given for e. Instead, an asterisk is used, which means that the value passed may have
any type. e is a template parameter.
After the various parameters have been passed to BOOST_PARAMETER_FUNCTION, the function body is defined.
This is done, as usual, between a pair of curly brackets. Parameters can be accessed in the function body. They
can be used like variables, with the types assigned within BOOST_PARAMETER_FUNCTION. Example 53.1 writes
the parameters to standard output.
complicated() is called from main(). The parameters are passed to complicated() in an arbitrary order.
Parameter names start with an underscore. Boost.Parameter uses the underscore to avoid name clashes with other
variables.

Note

To pass function parameters as key/value pairs in C++, you can also use the named pa-
rameter idiom, which doesn’t require a library like Boost.Parameter.

Example 53.2 Optional function parameters

#include <boost/parameter.hpp>
#include <string>
#include <iostream>
#include <ios>

BOOST_PARAMETER_NAME(a)
BOOST_PARAMETER_NAME(b)
BOOST_PARAMETER_NAME(c)
BOOST_PARAMETER_NAME(d)
BOOST_PARAMETER_NAME(e)

BOOST_PARAMETER_FUNCTION(
(void),
complicated,
tag,
(required

(a, (int))
(b, (char)))

(optional
(c, (double), 3.14)
(d, (std::string), "Boost")
(e, *, true))

)
{

std::cout.setf(std::ios::boolalpha);
std::cout << a << '\n';
std::cout << b << '\n';
std::cout << c << '\n';
std::cout << d << '\n';

256

http://www.parashift.com/c++-faq/named-parameter-idiom.html
http://www.parashift.com/c++-faq/named-parameter-idiom.html

CHAPTER 53. BOOST.PARAMETER

std::cout << e << '\n';
}

int main()
{

complicated(_b = 'B', _a = 1);
}

BOOST_PARAMETER_FUNCTION also supports defining optional parameters.
In Example 53.2 the parameters c, d, and e are optional. These parameters are defined in BOOST_PARAMETER_F
UNCTION using the optional keyword.
Optional parameters are defined like required parameters: a parameter name is given followed by a type. As
usual, the type is wrapped in parentheses. However, optional parameters need to have a default value.
With the call to complicated(), only the parameters a and b are passed. These are the only required parame-
ters. As the parameters c, d, and e aren’t used, they are set to default values.
Boost.Parameter provides macros in addition to BOOST_PARAMETER_FUNCTION. For example, you can use BOOS
T_PARAMETER_MEMBER_FUNCTION to define a member function, and BOOST_PARAMETER_CONST_MEMBER_FU
NCTION to define a constant member function.
You can define functions with Boost.Parameter that try to assign values to parameters automatically. In that case,
you don’t need to pass key/value pairs – it is sufficient to pass values only. If the types of all values are different,
Boost.Parameter can detect which value belongs to which parameter. This might require you to have a deeper
knowledge of template meta programming.
Example 53.3 uses Boost.Parameter to pass template parameters as key/value pairs. As with functions, it is possi-
ble to pass the template parameters in any order.
The example defines a class complicated, which expects three template parameters. Because the order of the
parameters doesn’t matter, they are called A, B, and C. A, B, and C aren’t the names of the parameters that will be
used when the class template is accessed. As with functions, the parameter names are defined using a macro. For
template parameters, BOOST_PARAMETER_TEMPLATE_KEYWORD is used. Example 53.3 defines three parameter
names integral_type, floating_point_type, and any_type.
After the parameter names have been defined, you must specify the types that may be passed. For example,
the parameter integral_type can be used to pass types such as int or long, but not a type like std::string.
boost::parameter::parameters is used to create a signature that refers to the parameter names and defines
which types may be passed with each of them.
boost::parameter::parameters is a tuple that describes parameters. Required parameters are marked with
boost::parameter::required.
boost::parameter::required requires two parameters. The first is the name of the parameter defined with
BOOST_PARAMETER_TEMPLATE_KEYWORD. The second identifies the type the parameter may be set to. For ex-
ample, integral_type may be set to an integral type. This requirement is expressed with std::is_integral
<_>. std::is_integral<_> is a lambda function based on Boost.MPL. boost::mpl::placeholders::_ is
a placeholder provided by this library. If the type to which integral_type is set is passed to std::is_integral
instead of boost::mpl::placeholders::_, and the result is true, a valid type is used. The requirements for
the other parameters floating_point_type and any_type are defined similarly.
Example 53.3 Template parameters as key/value pairs

#include <boost/parameter.hpp>
#include <boost/mpl/placeholders.hpp>
#include <type_traits>
#include <typeinfo>
#include <iostream>

BOOST_PARAMETER_TEMPLATE_KEYWORD(integral_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(floating_point_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(any_type)

using namespace boost::parameter;
using boost::mpl::placeholders::_;

typedef parameters<
required<tag::integral_type, std::is_integral<_>>,
required<tag::floating_point_type, std::is_floating_point<_>>,
required<tag::any_type, std::is_object<_>>

257

CHAPTER 53. BOOST.PARAMETER

> complicated_signature;

template <class A, class B, class C>
class complicated
{
public:

typedef typename complicated_signature::bind<A, B, C>::type args;
typedef typename value_type<args, tag::integral_type>::type integral_type;
typedef typename value_type<args, tag::floating_point_type>::type

floating_point_type;
typedef typename value_type<args, tag::any_type>::type any_type;

};

int main()
{

typedef complicated<floating_point_type<double>, integral_type<int>,
any_type<bool>> c;

std::cout << typeid(c::integral_type).name() << '\n';
std::cout << typeid(c::floating_point_type).name() << '\n';
std::cout << typeid(c::any_type).name() << '\n';

}

After the signature has been created and defined as complicated_signature, it is used by the class complicated.
First, the signature is bound with complicated_signature::bind to the template parameters A, B, and C.
The new type, args, represents the connection between the template parameters passed and the requirements that
must be met by the template parameters. Next, args is accessed to get the parameter values. This is done with
boost::parameter::value_type. boost::parameter::value_type expects args and a parameter to
be passed. The parameter determines the type created. In Example 53.3, the type definition integral_type in the
class complicated is used to get the type that was passed with the parameter integral_type to complicated.
main() accesses complicated to instantiate the class. The parameter integral_type is set to int, floating_point_type
to double, and any_type to bool. The order of the parameters passed doesn’t matter. The type definitions inte-
gral_type, floating_point_type, and any_type are then accessed by typeid to get their underlying types. Com-
piled with Visual C++ 2013, the example writes int, double and bool to standard output.
Example 53.4 Optional template parameters

#include <boost/parameter.hpp>
#include <boost/mpl/placeholders.hpp>
#include <type_traits>
#include <typeinfo>
#include <iostream>

BOOST_PARAMETER_TEMPLATE_KEYWORD(integral_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(floating_point_type)
BOOST_PARAMETER_TEMPLATE_KEYWORD(any_type)

using namespace boost::parameter;
using boost::mpl::placeholders::_;

typedef parameters<
required<tag::integral_type, std::is_integral<_>>,
optional<tag::floating_point_type, std::is_floating_point<_>>,
optional<tag::any_type, std::is_object<_>>

> complicated_signature;

template <class A, class B = void_, class C = void_>
class complicated
{
public:

typedef typename complicated_signature::bind<A, B, C>::type args;
typedef typename value_type<args, tag::integral_type>::type integral_type;
typedef typename value_type<args, tag::floating_point_type, float>::type

floating_point_type;
typedef typename value_type<args, tag::any_type, bool>::type any_type;

258

CHAPTER 53. BOOST.PARAMETER

};

int main()
{

typedef complicated<floating_point_type<double>, integral_type<short>> c;
std::cout << typeid(c::integral_type).name() << '\n';
std::cout << typeid(c::floating_point_type).name() << '\n';
std::cout << typeid(c::any_type).name() << '\n';

}

Example 53.4 introduces optional template parameters. The signature uses boost::parameter::optional
for the optional template parameters. The optional template parameters from complicated are set to boost:
:parameter::void_, and boost::parameter::value_type is given a default value. This default value is
the type an optional parameter will be set to if the type isn’t otherwise set.
complicated is instantiated in main(). This time only the parameters integral_type and floating_point_type
are used. any_type is not used. Compiled with Visual C++ 2013, the example writes short for integral_type,
double for floating_point_type, and bool for any_type to standard output.
Boost.Parameter can automatically detect template parameters. You can create signatures that allow types to be
automatically assigned to parameters. As with function parameters, deeper knowledge in template meta program-
ming is required to do this.

259

Chapter 54

Boost.Conversion

Boost.Conversion defines the cast operators boost::polymorphic_cast and boost::polymorphic_downc
ast in the header file boost/cast.hpp. They are designed to handle type casts – usually done with dynamic
_cast – more precisely.
Example 54.1 Down and cross casts with dynamic_cast

struct base1 { virtual ~base1() = default; };
struct base2 { virtual ~base2() = default; };
struct derived : public base1, public base2 {};

void downcast(base1 *b1)
{

derived *d = dynamic_cast<derived*>(b1);
}

void crosscast(base1 *b1)
{

base2 *b2 = dynamic_cast<base2*>(b1);
}

int main()
{

derived *d = new derived;
downcast(d);

base1 *b1 = new derived;
crosscast(b1);

}

Example 54.1 uses the cast operator dynamic_cast twice: In downcast(), it transforms a pointer pointing to a
base class to one pointing to a derived class. In crosscast(), it transforms a pointer pointing to a base class to
one pointing to a different base class. The first transformation is a downcast, and the second is a cross cast. The
cast operators from Boost.Conversion let you distinguish a downcast from a cross cast.
Example 54.2 Down and cross casts with polymorphic_downcast and polymorphic_cast

#include <boost/cast.hpp>

struct base1 { virtual ~base1() = default; };
struct base2 { virtual ~base2() = default; };
struct derived : public base1, public base2 {};

void downcast(base1 *b1)
{

derived *d = boost::polymorphic_downcast<derived*>(b1);
}

void crosscast(base1 *b1)
{

base2 *b2 = boost::polymorphic_cast<base2*>(b1);

260

http://www.boost.org/libs/conversion/cast.htm

CHAPTER 54. BOOST.CONVERSION

}

int main()
{

derived *d = new derived;
downcast(d);

base1 *b1 = new derived;
crosscast(b1);

}

boost::polymorphic_downcast (see Example 54.2) can only be used for downcasts because it uses stati
c_cast to perform the cast. Because static_cast does not dynamically check the cast for validity, boost::
polymorphic_downcast must only be used if the cast is safe. In debug builds, boost::polymorphic_down
cast uses dynamic_cast and assert() to make sure the type cast is valid. This test is only performed if the
macro NDEBUG is not defined, which is usually the case for debug builds.
boost::polymorphic_cast is required for cross casts. boost::polymorphic_cast uses dynamic_cast,
which is the only cast operator that can perform a cross cast. It is better to use boost::polymorphic_cast
instead of dynamic_cast because the former throws an exception of type std::bad_cast in case of an error,
while dynamic_cast returns a null pointer if the type cast fails.
Use boost::polymorphic_downcast and boost::polymorphic_cast only to convert pointers; otherwise,
use dynamic_cast. Because boost::polymorphic_downcast is based on static_cast, it cannot convert
objects of a base class to objects of a derived class. Also, it does not make sense to use boost::polymorph
ic_cast to convert types other than pointers because dynamic_cast will throw an exception of type std::
bad_cast if a cast fails.

261

Part XIII

Error Handling

262

The following libraries support error handling.

• Boost.System provides classes to describe and identify errors. Since C++11, these classes have been part
of the standard library.

• Boost.Exception makes it possible to attach data to exceptions after they have been thrown.

263

Chapter 55

Boost.System

Boost.System is a library that, in essence, defines four classes to identify errors. All four classes were added
to the standard library with C++11. If your development environment supports C++11, you don’t need to use
Boost.System. However, since many Boost libraries use Boost.System, you might encounter Boost.System through
those other libraries.
boost::system::error_code is the most basic class in Boost.System; it represents operating system-specific
errors. Because operating systems typically enumerate errors, boost::system::error_code saves an error
code in a variable of type int. Example 55.1 illustrates how to use this class.
Example 55.1 Using boost::system::error_code

#include <boost/system/error_code.hpp>
#include <iostream>

using namespace boost::system;

void fail(error_code &ec)
{

ec = errc::make_error_code(errc::not_supported);
}

int main()
{

error_code ec;
fail(ec);
std::cout << ec.value() << '\n';

}

Example 55.1 defines the function fail(), which is used to return an error. In order for the caller to detect
whether fail() failed, an object of type boost::system::error_code is passed by reference. Many func-
tions that are provided by Boost libraries use boost::system::error_code like this. For example, Boost.Asio
provides the function boost::asio::ip::host_name(), to which you can pass an object of type boost::
system::error_code.
Boost.System defines numerous error codes in the namespace boost::system::errc. Example 55.1 assigns
the error code boost::system::errc::not_supported to ec. Because boost::system::errc::not_
supported is a number and ec is an object of type boost::system::error_code, the function boost::
system::errc::make_error_code() is called. This function creates an object of type boost::system::
error_code with the respective error code.
In main(), value() is called on ec. This member function returns the error code stored in the object.
By default, 0 means no error. Every other number refers to an error. Error code values are operating system de-
pendent. Refer to the documentation for your operating system for a description of error codes.
In addition to value(), boost::system::error_code provides the member function category(), which
returns an object of type boost::system::error_category.
Error codes are simply numeric values. While operating system manufacturers such as Microsoft are able to
guarantee the uniqueness of system error codes, keeping error codes unique across all existing applications is
virtually impossible for application developers. It would require a central database filled with error codes from

264

http://www.boost.org/libs/system

CHAPTER 55. BOOST.SYSTEM

all software developers around the world to avoid reusing the same codes for different errors. Because this is im-
practical, error categories exist.
Example 55.2 Using boost::system::error_category

#include <boost/system/error_code.hpp>
#include <iostream>

using namespace boost::system;

void fail(error_code &ec)
{

ec = errc::make_error_code(errc::not_supported);
}

int main()
{

error_code ec;
fail(ec);
std::cout << ec.value() << '\n';
std::cout << ec.category().name() << '\n';

}

Error codes of type boost::system::error_code belong to a category that can be retrieved with the member
function category(). Errors created with boost::system::errc::make_error_code() automatically
belong to the generic category. This is the category errors belong to if they aren’t assigned to another category
explicitly.
As shown in Example 55.2, category() returns an error’s category. This is an object of type boost::system:
:error_category. There are only a few member functions. For example, name() retrieves the name of the
category. Example 55.2 writes generic to standard output.
You can also use the free-standing function boost::system::generic_category() to access the generic
category.
Boost.System provides a second category. If you call the free-standing function boost::system::system_
category(), you get a reference to the system category. If you write the category’s name to standard output,
system is displayed.
Errors are uniquely identified by the error code and the error category. Because error codes are only required to
be unique within a category, you should create a new category whenever you want to define error codes specific
to your program. This makes it possible to use error codes that do not interfere with error codes from other devel-
opers.
Example 55.3 Creating error categories
#include <boost/system/error_code.hpp>
#include <string>
#include <iostream>

class application_category :
public boost::system::error_category

{
public:

const char *name() const noexcept { return "my app"; }
std::string message(int ev) const { return "error message"; }

};

application_category cat;

int main()
{

boost::system::error_code ec{129, cat};
std::cout << ec.value() << '\n';
std::cout << ec.category().name() << '\n';

}

A new error category is defined by creating a class derived from boost::system::error_category. This
requires you to define various member functions. At a minimum, the member functions name() and message()

265

CHAPTER 55. BOOST.SYSTEM

must be supplied because they are defined as pure virtual member functions in boost::system::error_cate
gory. For additional member functions, the default behavior can be overridden if required.
While name() returns the name of the error category, message() is used to retrieve the error description for a
particular error code. Unlike Example 55.3, the parameter ev is usually evaluated to return a description based
on the error code.
An object of the type of the newly created error category can be used to initialize an error code. Example 55.3
defines the error code ec using the new category application_category. Therefore, error code 129 is no
longer a generic error; instead, its meaning is defined by the developer of the new error category.

Note

To compile Example 55.3 with Visual C++ 2013, remove the keyword noexcept. This
version of the Microsoft compiler doesn’t support noexcept.

boost::system::error_code provides a member function called default_error_condition(), that re-
turns an object of type boost::system::error_condition. The interface of boost::system::error_
condition is almost identical to the interface of boost::system::error_code. The only difference is the
member function default_error_condition(), which is only provided by boost::system::error_c
ode.
Example 55.4 Using boost::system::error_condition

#include <boost/system/error_code.hpp>
#include <iostream>

using namespace boost::system;

void fail(error_code &ec)
{

ec = errc::make_error_code(errc::not_supported);
}

int main()
{

error_code ec;
fail(ec);
boost::system::error_condition ecnd = ec.default_error_condition();
std::cout << ecnd.value() << '\n';
std::cout << ecnd.category().name() << '\n';

}

boost::system::error_condition is used just like boost::system::error_code. That’s why it’s pos-
sible, as shown in Example 55.4, to call the member functions value() and category() for an object of type
boost::system::error_condition.
While the class boost::system::error_code is used for platform-dependent error codes, boost::system:
:error_condition is used to access platform-independent error codes. The member function default_er
ror_condition() translates a platform-dependent error code into a platform-independent error code of type
boost::system::error_condition.
You can use boost::system::error_condition to identify errors that are platform independent. Such an
error could be, for example, a failed access to a non-existing file. While operating systems may provide different
interfaces to access files and may return different error codes, trying to access a non-existing file is an error on
all operating systems. The error code returned from operating system specific interfaces is stored in boost::
system::error_code. The error code that describes the failed access to a non-existing file is stored in boost:
:system::error_condition.
The last class provided by Boost.System is boost::system::system_error, which is derived from std::
runtime_error. It can be used to transport an error code of type boost::system::error_code in an excep-
tion.
Example 55.5 Using boost::system::system_error

#include <boost/system/error_code.hpp>
#include <boost/system/system_error.hpp>

266

CHAPTER 55. BOOST.SYSTEM

#include <iostream>

using namespace boost::system;

void fail()
{

throw system_error{errc::make_error_code(errc::not_supported)};
}

int main()
{

try
{

fail();
}
catch (system_error &e)
{

error_code ec = e.code();
std::cerr << ec.value() << '\n';
std::cerr << ec.category().name() << '\n';

}
}

In Example 55.5, the free-standing function fail() has been changed to throw an exception of type boost::
system::system_error in case of an error. This exception can transport an error code of type boost::sys
tem::error_code. The exception is caught in main(), which writes the error code and the error category to
standard error. There is a second variant of the function boost::asio::ip::host_name() that works just like
this.

267

Chapter 56

Boost.Exception

The library Boost.Exception provides a new exception type, boost::exception, that lets you add data to an
exception after it has been thrown. This type is defined in boost/exception/exception.hpp. Because
Boost.Exception spreads its classes and functions over multiple header files, the following examples access the
master header file boost/exception/all.hpp to avoid including header files one by one.
Boost.Exception supports the mechanism from the C++11 standard that transports an exception from one thread
to another. boost::exception_ptr is similar to std::exception_ptr. However, Boost.Exception isn’t
a full replacement for the header file exception from the standard library. For example, Boost.Exception is
missing support for nested exceptions of type std::nested_exception.

Note

To compile the examples in this chapter with Visual C++ 2013, remove the keyword
noexcept. This version of the Microsoft compiler doesn’t support noexcept yet.

Example 56.1 calls the function write_lots_of_zeros(), which in turn calls allocate_memory(). alloc
ate_memory() allocates memory dynamically. The function passes std::nothrow to new and checks whether
the return value is 0. If memory allocation fails, an exception of type allocation_failed is thrown. allocat
ion_failed replaces the exception std::bad_alloc thrown by default if new fails to allocate memory.
write_lots_of_zeros() calls allocate_memory() to try and allocate a memory block with the greatest
possible size. This is done with the help of max() from std::numeric_limits. The example intentionally
tries to allocate that much memory to make the allocation fail.
Example 56.1 Using boost::exception

#include <boost/exception/all.hpp>
#include <exception>
#include <new>
#include <string>
#include <algorithm>
#include <limits>
#include <iostream>

typedef boost::error_info<struct tag_errmsg, std::string> errmsg_info;

struct allocation_failed : public boost::exception, public std::exception
{

const char *what() const noexcept { return "allocation failed"; }
};

char *allocate_memory(std::size_t size)
{

char *c = new (std::nothrow) char[size];
if (!c)

throw allocation_failed{};
return c;

268

http://www.boost.org/libs/exception

CHAPTER 56. BOOST.EXCEPTION

}

char *write_lots_of_zeros()
{

try
{

char *c = allocate_memory(std::numeric_limits<std::size_t>::max());
std::fill_n(c, std::numeric_limits<std::size_t>::max(), 0);
return c;

}
catch (boost::exception &e)
{

e << errmsg_info{"writing lots of zeros failed"};
throw;

}
}

int main()
{

try
{

char *c = write_lots_of_zeros();
delete[] c;

}
catch (boost::exception &e)
{

std::cerr << boost::diagnostic_information(e);
}

}

allocation_failed is derived from boost::exception and std::exception. Deriving the class from
std::exception is not necessary. allocation_failed could have also been derived from a class from a
different class hierarchy in order to embed it in an existing framework. While Example 56.1 uses the class hierar-
chy defined by the standard, deriving allocation_failed solely from boost::exception would have been
sufficient.
If an exception of type allocation_failed is caught, allocate_memory() must be the origin of the ex-
ception, since it is the only function that throws exceptions of this type. In programs that have many functions
calling allocate_memory(), knowing the type of the exception is no longer sufficient to debug the program
effectively. In those cases, it would help to know which function tried to allocate more memory than allocate_
memory() could provide.
The challenge is that allocate_memory() does not have any additional information, such as the caller name,
to add to the exception. allocate_memory() can’t enrich the exception. This can only be done in the calling
context.
With Boost.Exception, data can be added to an exception at any time. You just need to define a type based on
boost::error_info for each bit of data you need to add.
boost::error_info is a template that expects two parameters. The first parameter is a tag that uniquely iden-
tifies the newly created type. This is typically a structure with a unique name. The second parameter refers to the
type of the value stored inside the exception. Example 56.1 defines a new type, errmsg_info – uniquely identi-
fiable via the structure tag_errmsg – that stores a string of type std::string.
In the catch handler of write_lots_of_zeros(), errmsg_info is used to create an object that is initialized
with the string “writing lots of zeros failed.” This object is then added to the exception of type boost::except
ion using operator<<. Then the exception is re-thrown.
Now, the exception doesn’t just denote a failed memory allocation. It also says that the memory allocation failed
when the program tried to write lots of zeros in the function write_lots_of_zeros(). Knowing which func-
tion called allocate_memory() makes debugging larger programs easier.
To retrieve all available data from an exception, the function boost::diagnostic_information() can be
called in the catch handler of main(). boost::diagnostic_information() calls the member function
what() for each exception passed to it and accesses all of the additional data stored inside the exception. boost:
:diagnostic_information() returns a string of type std::string, which, for example, can be written to
standard error.
When compiled with Visual C++ 2013, Example 56.1 will display the following message:

269

CHAPTER 56. BOOST.EXCEPTION

Throw location unknown (consider using BOOST_THROW_EXCEPTION)
Dynamic exception type: struct allocation_failed
std::exception::what: allocation failed
[struct tag_errmsg *] = writing lots of zeros failed

The message contains the type of the exception, the error message retrieved from what(), and the description,
including the name of the structure.
boost::diagnostic_information() checks at run time whether or not a given exception is derived from
std::exception. what() will only be called if that is the case.
The name of the function that threw the exception of type allocation_failed is unknown.
Boost.Exception provides a macro to throw an exception that contains not only the name of the function, but also
additional data such as the file name and the line number.
Using the macro BOOST_THROW_EXCEPTION instead of throw, data such as function name, file name, and line
number are automatically added to the exception. But this only works if the compiler supports macros for the ad-
ditional data. While macros such as __FILE__ and __LINE__ have been standardized since C++98, the macro
__func__, which gets the name of the current function, only became standard with C++11. Because many com-
pilers provided such a macro before C++11, BOOST_THROW_EXCEPTION tries to identify the underlying compiler
and use the corresponding macro if it exists.
Compiled with Visual C++ 2013, Example 56.2 displays the following message:

main.cpp(20): Throw in function char *__cdecl allocate_memory(unsigned int)
Dynamic exception type: class boost::exception_detail::clone_impl<struct

boost::exception_detail::error_info_injector<struct allocation_failed> >
std::exception::what: allocation failed
[struct tag_errmsg *] = writing lots of zeros failed

In Example 56.2, allocation_failed is no longer derived from boost::exception. BOOST_THROW_EXC
EPTION accesses the function boost::enable_error_info(), which identifies whether or not an exception
is derived from boost::exception. If not, it creates a new exception type derived from the specified type and
boost::exception. This is why the message shown above contains a different exception type than allocati
on_failed.
Example 56.2 More data with BOOST_THROW_EXCEPTION

#include <boost/exception/all.hpp>
#include <exception>
#include <new>
#include <string>
#include <algorithm>
#include <limits>
#include <iostream>

typedef boost::error_info<struct tag_errmsg, std::string> errmsg_info;

struct allocation_failed : public std::exception
{

const char *what() const noexcept { return "allocation failed"; }
};

char *allocate_memory(std::size_t size)
{

char *c = new (std::nothrow) char[size];
if (!c)

BOOST_THROW_EXCEPTION(allocation_failed{});
return c;

}

char *write_lots_of_zeros()
{

try
{

char *c = allocate_memory(std::numeric_limits<std::size_t>::max());
std::fill_n(c, std::numeric_limits<std::size_t>::max(), 0);
return c;

270

CHAPTER 56. BOOST.EXCEPTION

}
catch (boost::exception &e)
{

e << errmsg_info{"writing lots of zeros failed"};
throw;

}
}

int main()
{

try
{

char *c = write_lots_of_zeros();
delete[] c;

}
catch (boost::exception &e)
{

std::cerr << boost::diagnostic_information(e);
}

}

Example 56.3 does not use boost::diagnostic_information(), it uses boost::get_error_info() to
directly access the error message of type errmsg_info. Because boost::get_error_info() returns a smart
pointer of type boost::shared_ptr, operator* is used to fetch the error message. If the parameter passed
to boost::get_error_info() is not of type boost::exception, a null pointer is returned. If the macro
BOOST_THROW_EXCEPTION is always used to throw an exception, the exception will always be derived from
boost::exception – there is no need to check the returned smart pointer for null in that case.
Example 56.3 Selectively accessing data with boost::get_error_info()

#include <boost/exception/all.hpp>
#include <exception>
#include <new>
#include <string>
#include <algorithm>
#include <limits>
#include <iostream>

typedef boost::error_info<struct tag_errmsg, std::string> errmsg_info;

struct allocation_failed : public std::exception
{

const char *what() const noexcept { return "allocation failed"; }
};

char *allocate_memory(std::size_t size)
{

char *c = new (std::nothrow) char[size];
if (!c)

BOOST_THROW_EXCEPTION(allocation_failed{});
return c;

}

char *write_lots_of_zeros()
{

try
{

char *c = allocate_memory(std::numeric_limits<std::size_t>::max());
std::fill_n(c, std::numeric_limits<std::size_t>::max(), 0);
return c;

}
catch (boost::exception &e)
{

e << errmsg_info{"writing lots of zeros failed"};
throw;

271

CHAPTER 56. BOOST.EXCEPTION

}
}

int main()
{

try
{

char *c = write_lots_of_zeros();
delete[] c;

}
catch (boost::exception &e)
{

std::cerr << *boost::get_error_info<errmsg_info>(e);
}

}

272

Part XIV

Number Handling

273

The following libraries are all about working with numbers.

• Boost.Integer provides integral types to, for example, specify the exact number of bytes used by a variable.

• Boost.Accumulators provides accumulators that you can pass numbers to when you are calculating values
like the mean or standard deviation.

• Boost.MinMax lets you get the smallest and largest number in a container with one function call.

• Boost.Random provides random number generators.

• Boost.NumericConversion provides a cast operator that protects against unintended overflows.

274

Chapter 57

Boost.Integer

Boost.Integer provides the header file boost/cstdint.hpp, which defines specialized types for integers.
These definitions originate from the C99 standard. This is a version of the standard for the C programming lan-
guage that was released in 1999. Because the first version of the C++ standard was released in 1998, it does not
include the specialized integer types defined in C99.
C99 defines types in the header file stdint.h. This header file was taken into C++11. In C++, it is called
cstdint. If your development environment supports C++11, you can access cstdint, and you don’t have
to use boost/cstdint.hpp.
The types from boost/cstdint.hpp are defined in the namespace boost. They can be divided into three
categories:

• Types such as boost::int8_t and boost::uint64_t carry the exact memory size in their names. Thus, boost::int8_t
contains exactly 8 bits, and boost::uint64_t contains exactly 64 bits.

• Types such as boost::int_least8_t and boost::uint_least32_t contain at least as many bits as their names say.
It is possible that the memory size of boost::int_least8_t will be greater than 8 bits and that of boost::uint_least32_t
will be greater than 32 bits.

• Types such as boost::int_fast8_t and boost::uint_fast16_t also have a minimum size. Their actual size is set
to a value that guarantees the best performance. Example 57.1 compiled with Visual C++ 2013 and run on
a 64-bit Windows 7 system displays 4 for sizeof(uif16).

Please note that 64-bit types aren’t available on all platforms. You can check with the macro BOOST_NO_INT6
4_T whether 64-bit types are available or not.
Example 57.1 Types for integers with number of bits
#include <boost/cstdint.hpp>
#include <iostream>

int main()
{

boost::int8_t i8 = 1;
std::cout << sizeof(i8) << '\n';

#ifndef BOOST_NO_INT64_T
boost::uint64_t ui64 = 1;
std::cout << sizeof(ui64) << '\n';

#endif

boost::int_least8_t il8 = 1;
std::cout << sizeof(il8) << '\n';

boost::uint_least32_t uil32 = 1;
std::cout << sizeof(uil32) << '\n';

boost::int_fast8_t if8 = 1;
std::cout << sizeof(if8) << '\n';

boost::uint_fast16_t uif16 = 1;

275

http://www.boost.org/libs/integer

CHAPTER 57. BOOST.INTEGER

std::cout << sizeof(uif16) << '\n';
}

Boost.Integer defines two types, boost::intmax_t and boost::uintmax_t, for the maximum width integer types
available on a platform. Example 57.2 compiled with Visual C++ 2013 and run on a 64-bit Windows 7 system
displays 8 for sizeof(imax). Thus, the biggest type for integers contains 64 bits.
Example 57.2 More specialized types for integers

#include <boost/cstdint.hpp>
#include <iostream>

int main()
{

boost::intmax_t imax = 1;
std::cout << sizeof(imax) << '\n';

std::cout << sizeof(UINT8_C(1)) << '\n';

#ifndef BOOST_NO_INT64_T
std::cout << sizeof(INT64_C(1)) << '\n';

#endif
}

Furthermore, Boost.Integer provides macros to use integers as literals with certain types. If an integer is written
in C++ code, by default it uses the type int and allocates at least 4 bytes. Macros like UINT8_C and INT64_C
make it possible to set a minimum size for integers as literals. Example 57.2 returns at least 1 for sizeof(UINT
8_C(1)) and at least 8 for sizeof(INT64_C(1)).
Boost.Integer provides additional header files that mainly define classes used for template meta programming.

276

Chapter 58

Boost.Accumulators

Boost.Accumulators provides classes to process samples. For example, you can find the largest or smallest sam-
ple, or calculate the total of all samples. While the standard library supports some of these operations, Boost.Accumulators
also supports statistical calculations, such as mean and standard deviation.
The library is called Boost.Accumulators because the accumulator is an essential concept. An accumulator is
a container that calculates a new result every time a value is inserted. The value isn’t necessarily stored in the
accumulator. Instead the accumulator continuously updates intermediary results as it is fed new values.
Boost.Accumulators contains three parts:

• The framework provides the overall structure of the library. It provides the class boost::accumulat
ors::accumulator_set, which is always used with Boost.Accumulators. While you need to know
about this and a few other classes from the framework, the details don’t matter unless you want to develop
your own accumulators. The header file boost/accumulators/accumulators.hpp gives you
access to boost::accumulators::accumulator_set and other classes from the framework.

• Boost.Accumulators provides numerous accumulators that perform calculations. You can access and use
all of these accumulators once you include boost/accumulators/statistics.hpp.

• Boost.Accumulators provides operators to, for example, multiply a complex number of type std::comp
lex with an int value or add two vectors. The header file boost/accumulators/numeric/functional.
hpp defines operators for std::complex, std::valarray, and std::vector. You don’t need to in-
clude the header file yourself because it is included in the header files for the accumulators. However, you
have to define the macros BOOST_NUMERIC_FUNCTIONAL_STD_COMPLEX_SUPPORT, BOOST_NUMERIC_F
UNCTIONAL_STD_VALARRAY_SUPPORT, and BOOST_NUMERIC_FUNCTIONAL_STD_VECTOR_SUPPORT to
make the operators available.

All classes and functions provided by Boost.Accumulators are defined in boost::accumulators or nested
namespaces. For example, all accumulators are defined in boost::accumulators::tag.
Example 58.1 Counting with boost::accumulators::tag::count

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <iostream>

using namespace boost::accumulators;

int main()
{

accumulator_set<int, features<tag::count>> acc;
acc(4);
acc(-6);
acc(9);
std::cout << count(acc) << '\n';

}

Example 58.1 uses boost::accumulators::tag::count, a simple accumulator that counts the number of
values passed to it. Thus, since three values are passed, this example writes 3 to standard output. To use an accu-
mulator, you access the class boost::accumulators::accumulator_set, which is a template that expects
as its first parameter the type of the values that will be processed. Example 58.1 passes int as the first parameter.

277

http://www.boost.org/libs/accumulators

CHAPTER 58. BOOST.ACCUMULATORS

The second parameter specifies the accumulators you want to use. You can use multiple accumulators. The class
name boost::accumulators::accumulator_set indicates that any number of accumulators can be man-
aged.
Strictly speaking, you specify features, not accumulators. Features define what should be calculated. You deter-
mine the what, not the how. There can be different implementations for features. The implementations are the
accumulators.
Example 58.1 uses boost::accumulators::tag::count to select an accumulator that counts values. If sev-
eral accumulators exist that can count values, Boost.Accumulators selects the default accumulator.
Please note that you can’t pass features directly to boost::accumulators::accumulator_set. You need to
use boost::accumulators::features.
An object of type boost::accumulators::accumulator_set can be used like a function. Values can be
passed by calling operator(). They are immediately processed. The values passed must have the same type as
was passed as the first template parameter to boost::accumulators::accumulator_set.
For every feature, there is an identically named extractor. An extractor receives the current result of an accumu-
lator. Example 58.1 uses the extractor boost::accumulators::count(). The only parameter passed is acc.
boost::accumulators::count() returns 3.
Example 58.2 Using mean and variance

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <iostream>

using namespace boost::accumulators;

int main()
{

accumulator_set<double, features<tag::mean, tag::variance>> acc;
acc(8);
acc(9);
acc(10);
acc(11);
acc(12);
std::cout << mean(acc) << '\n';
std::cout << variance(acc) << '\n';

}

Example 58.2 uses the two features boost::accumulators::tag::mean and boost::accumulators::
tag::variance to calculate the mean and the variance of five values. The example writes 10 and 2 to standard
output.
The variance is 2 because Boost.Accumulators assigns a weight of 0.2 to each of the five values. The accumula-
tor selected with boost::accumulators::tag::variance uses weights. If weights are not set explicitly, all
values are given the same weight.
Example 58.3 Calculating the weighted variance

#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
#include <iostream>

using namespace boost::accumulators;

int main()
{

accumulator_set<double, features<tag::mean, tag::variance>, int> acc;
acc(8, weight = 1);
acc(9, weight = 1);
acc(10, weight = 4);
acc(11, weight = 1);
acc(12, weight = 1);
std::cout << mean(acc) << '\n';
std::cout << variance(acc) << '\n';

}

278

CHAPTER 58. BOOST.ACCUMULATORS

Example 58.3 passes int as a third template parameter to boost::accumulators::accumulator_set. This
parameter specifies the data type of the weights. In this example, weights are assigned to every value.
Boost.Accumulators uses Boost.Parameter to pass additional parameters, such as weights, as name/value pairs.
The parameter name for weights is weight. You can treat the parameter like a variable and assign a value. The
name/value pair is passed as an additional parameter after every value to the accumulator.
In Example 58.3, the value 10 has a weight of 4 while all other values have a weight of 1. The mean is still 10
since weights don’t matter for means. However, the variance is now 1.25. It has decreased compared to the pre-
vious example because the middle value has a higher weight than the other values.
Boost.Accumulators provides many more accumulators. They are used like the accumulators introduced in this
chapter. The documentation of the library contains an overview on all available accumulators.

279

Chapter 59

Boost.MinMax

Boost.MinMax provides an algorithm to find the minimum and the maximum of two values using only one func-
tion call, which is more efficient than calling std::min() and std::max().
Boost.MinMax is part of C++11. You find the algorithms from this Boost library in the header file algorithm
if your development environment supports C++11.
Example 59.1 Using boost::minmax()

#include <boost/algorithm/minmax.hpp>
#include <boost/tuple/tuple.hpp>
#include <iostream>

int main()
{

int i = 2;
int j = 1;

boost::tuples::tuple<const int&, const int&> t = boost::minmax(i, j);

std::cout << t.get<0>() << '\n';
std::cout << t.get<1>() << '\n';

}

boost::minmax() computes the minimum and maximum of two objects. While both std::min() and std:
:max() return only one value, boost::minmax() returns two values as a tuple. The first reference in the tu-
ple points to the minimum and the second to the maximum. Example 59.1 writes 1 and 2 to the standard output
stream.
boost::minmax() is defined in boost/algorithm/minmax.hpp.
Example 59.2 Using boost::minmax_element()

#include <boost/algorithm/minmax_element.hpp>
#include <array>
#include <utility>
#include <iostream>

int main()
{

typedef std::array<int, 4> array;
array a{{2, 3, 0, 1}};

std::pair<array::iterator, array::iterator> p =
boost::minmax_element(a.begin(), a.end());

std::cout << *p.first << '\n';
std::cout << *p.second << '\n';

}

Just as the standard library offers algorithms to find the minimum and maximum values in a container, Boost.MinMax
offers the same functionality with only one call to the function boost::minmax_element().

280

http://www.boost.org/libs/algorithm/minmax

CHAPTER 59. BOOST.MINMAX

Unlike boost::minmax(), boost::minmax_element() returns a std::pair containing two iterators. The
first iterator points to the minimum and the second points to the maximum. Thus, Example 59.2 writes 0 and 3 to
the standard output stream.
boost::minmax_element() is defined in boost/algorithm/minmax_element.hpp.
Both boost::minmax() and boost::minmax_element() can be called with a third parameter that specifies
how objects should be compared. Thus, these functions can be used like the algorithms from the standard library.

281

Chapter 60

Boost.Random

The library Boost.Random provides numerous random number generators that allow you to decide how random
numbers should be generated. It was always possible in C++ to generate random numbers with std::rand()
from cstdlib. However, with std::rand() the way random numbers are generated depends on how the stan-
dard library was implemented.
You can use all of the random number generators and other classes and functions from Boost.Random when you
include the header file boost/random.hpp.
Large parts of this library were added to the standard library with C++11. If your development environment sup-
ports C++11, you can rewrite the Boost.Random examples in this chapter by including the header file random
and accessing the namespace std.
Example 60.1 Pseudo-random numbers with boost::random::mt19937

#include <boost/random.hpp>
#include <iostream>
#include <ctime>
#include <cstdint>

int main()
{

std::time_t now = std::time(0);
boost::random::mt19937 gen{static_cast<std::uint32_t>(now)};
std::cout << gen() << '\n';

}

Example 60.1 accesses the random number generator boost::random::mt19937. The operator operator()
generates a random number, which is written to standard output.
The random numbers generated by boost::random::mt19937 are integers. Whether integers or floating point
numbers are generated depends on the particular generator you use. All random number generators define the
type result_type to determine the type of the random numbers. The result_type for boost::random::
mt19937 is boost::uint32_t.
All random number generators provide two member functions: min() and max(). These functions return the
smallest and largest number that can be generated by that random number generator.
Nearly all of the random number generators provided by Boost.Random are pseudo-random number generators.
Pseudo-random number generators don’t generate real random numbers. They are based on algorithms that gen-
erate seemingly random numbers. boost::random::mt19937 is one of these pseudo-random number genera-
tors.
Pseudo-random number generators typically have to be initialized. If they are initialized with the same values,
they return the same random numbers. That’s why in Example 60.1 the return value of std::time() is passed
to the constructor of boost::random::mt19937. This should ensure that when the program is run at different
times, different random numbers will be generated.
Pseudo-random numbers are good enough for most use cases. std::rand() is also based on a pseudo-random
number generator, which must be initialized with std::srand(). However, Boost.Random provides a random
number generator that can generate real random numbers, as long as the operating system has a source to gener-
ate real random numbers.
Example 60.2 Real random numbers with boost::random::random_device

282

http://www.boost.org/libs/random

CHAPTER 60. BOOST.RANDOM

#include <boost/random/random_device.hpp>
#include <iostream>

int main()
{

boost::random::random_device gen;
std::cout << gen() << '\n';

}

boost::random::random_device is a non-deterministic random number generator, which is a random num-
ber generator that can generate real random numbers. There is no algorithm that needs to be initialized. Thus,
predicting the random numbers is impossible. Non-deterministic random number generators are often used in
security-related applications.
boost::random::random_device calls operating system functions to generate random numbers. If, as in Ex-
ample 60.2, the default constructor is called, boost::random::random_device uses the cryptographic service
provider MS_DEF_PROV on Windows and /dev/urandom on Linux as a source.
If you want to use another source, call the constructor of boost::random::random_device, which expects a
parameter of type std::string. How this parameter is interpreted depends on the operating system. On Win-
dows, it must be the name of a cryptographic service provider, on Linux a path to a device.
Please note that boost/random/random_device.hpp must be included if you want to use the class boost:
:random::random_device. This class is not made available by boost/random.hpp.
Example 60.3 The random numbers 0 and 1 with bernoulli_distribution

#include <boost/random.hpp>
#include <iostream>
#include <ctime>
#include <cstdint>

int main()
{

std::time_t now = std::time(0);
boost::random::mt19937 gen{static_cast<std::uint32_t>(now)};
boost::random::bernoulli_distribution<> dist;
std::cout << dist(gen) << '\n';

}

Example 60.3 uses the pseudo-random number generator boost::random::mt19937. In addition, a distribu-
tion is used. Distributions are Boost.Random classes that map the range of random numbers from a random num-
ber generator to another range. While random number generators like boost::random::mt19937 have a built-
in lower and upper limit for random numbers that can be seen using min() and max(), you may need random
numbers in a different range.
Example 60.3 simulates throwing a coin. Because a coin has only two sides, the random number generator should
return 0 or 1. boost::random::bernoulli_distribution is a distribution that returns one of two possible
results.
Distributions are used like random number generators: you call the operator operator() to receive a random
number. However, you must pass a random number generator as a parameter to a distribution. In Example 60.3,
dist uses the random number generator gen to return either 0 or 1.
Example 60.4 Random numbers between 1 and 100 with uniform_int_distribution

#include <boost/random.hpp>
#include <iostream>
#include <ctime>
#include <cstdint>

int main()
{

std::time_t now = std::time(0);
boost::random::mt19937 gen{static_cast<std::uint32_t>(now)};
boost::random::uniform_int_distribution<> dist{1, 100};
std::cout << dist(gen) << '\n';

}

283

CHAPTER 60. BOOST.RANDOM

Boost.Random provides numerous distributions. Example 60.4 uses a distribution that is often needed: boost:
:random::uniform_int_distribution. This distribution lets you define the range of random numbers you
need. In Example 60.4, dist returns a number between 1 and 100.
Please note that the values 1 and 100 can be returned by dist. The lower and upper limits of distributions are
inclusive.
There are many distributions in Boost.Random besides boost::random::bernoulli_distribution and
boost::random::uniform_int_distribution. For example, there are distributions like boost::random:
:normal_distribution and boost::random::chi_squared_distribution, which are used in statistics.

284

Chapter 61

Boost.NumericConversion

The library Boost.NumericConversion can be used to convert numbers of one numeric type to a different numeric
type. In C++, such a conversion can also take place implicitly, as shown in Example 61.1.
Example 61.1 Implicit conversion from int to short
#include <iostream>

int main()
{

int i = 0x10000;
short s = i;
std::cout << s << '\n';

}

Example 61.1 will compile cleanly because the type conversion from int to short takes place automatically. How-
ever, even though the program will run, the result of the conversion depends on the compiler used. The number
0x10000 in the variable i is too big to be stored in a variable of type short. According to the standard, the re-
sult of this operation is implementation specific. Compiled with Visual C++ 2013, the program displays 0, which
clearly differs from the value in i.
To avoid these kind of problems, you can use the cast operator boost::numeric_cast (see Example 61.2).
boost::numeric_cast is used exactly like the existing C++ cast operators. The correct header file must be
included; in this case, the header file boost/numeric/conversion/cast.hpp.
boost::numeric_cast does the same conversion as C++, but it verifies whether the conversion can take place
without changing the value being converted. In Example 61.2, this verification fails, and an exception of type
boost::numeric::bad_numeric_cast is thrown because 0x10000 is too big to be placed in a variable of
type short.
Example 61.2 Overflow detection with boost::numeric_cast

#include <boost/numeric/conversion/cast.hpp>
#include <iostream>

int main()
{

try
{

int i = 0x10000;
short s = boost::numeric_cast<short>(i);
std::cout << s << '\n';

}
catch (boost::numeric::bad_numeric_cast &e)
{

std::cerr << e.what() << '\n';
}

}

Strictly speaking, an exception of type boost::numeric::positive_overflow will be thrown. This type
specifies an overflow – in this case for positive numbers. There is also boost::numeric::negative_overf
low, which specifies an overflow for negative numbers (see Example 61.3).

285

http://www.boost.org/libs/numeric/conversion

CHAPTER 61. BOOST.NUMERICCONVERSION

Example 61.3 Overflow detection for negative numbers

#include <boost/numeric/conversion/cast.hpp>
#include <iostream>

int main()
{

try
{

int i = -0x10000;
short s = boost::numeric_cast<short>(i);
std::cout << s << '\n';

}
catch (boost::numeric::negative_overflow &e)
{

std::cerr << e.what() << '\n';
}

}

Boost.NumericConversion defines additional exception types, all derived from boost::numeric::bad_num
eric_cast. Because boost::numeric::bad_numeric_cast is derived from std::bad_cast, a catch
handler can also catch exceptions of this type.

286

Part XV

Application Libraries

287

Application libraries refers to libraries that are typically used exclusively in the development of stand-alone ap-
plications and not in the development of libraries.

• Boost.Log is a logging library.

• Boost.ProgramOptions is a library to define and parse command line options.

• Boost.Serialization lets you serialize objects to, for example, save them to and load them from files.

• Boost.Uuid supports working with UUIDs.

288

Chapter 62

Boost.Log

Boost.Log is the logging library in Boost. It supports numerous back-ends to log data in various formats. Back-
ends are accessed through front-ends that bundle services and forward log entries in different ways. For example,
there is a front-end that uses a thread to forward log entries asynchronously. Front-ends can have filters to ignore
certain log entries. And they define how log entries are formatted as strings. All these functions are extensible,
which makes Boost.Log a powerful library.
Example 62.1 introduces the essential components of Boost.Log. Boost.Log gives you access to back-ends,
front-ends, the core, and loggers:

• Back-ends decide where data is written. boost::log::sinks::text_ostream_backend is initialized
with a stream of type std::ostream and writes log entries to it.

• Front-ends are the connection between the core and a back-end. They implement various functions that
don’t need to be implemented by each individual back-end. For example, filters can be added to a front-
end to choose which log entries get forwarded to the back-end and which don’t.
Example 62.1 uses the front-end boost::log::sinks::asynchronous_sink. You must use a front-
end even if you don’t use filters. boost::log::sinks::asynchronous_sink uses a thread that for-
wards log entries to a back-end asynchronously. This can improve the performance but defers write opera-
tions.

• The core is the central component that all log entries are routed through. It is implemented as a singleton.
To get a pointer to the core, call boost::log::core::get().
Front-ends must be added to the core to receive log entries. Whether log entries are forwarded to front-
ends depends on the filter in the core. Filters can be registered either in front-ends or in the core. Filters
registered in the core are global, and filters registered in front-ends are local. If a log entry is filtered out by
the core, it isn’t forwarded to any front-end. If it is filtered by a front-end, it can still be processed by other
front-ends and forwarded to their back-ends.

• The logger is the component in Boost.Log you will use most often. While you access back-ends, front-
ends, and the core only when you initialize the logging library, you use a logger every time you write a log
entry. The logger forwards the entry to the core.
The logger in Example 62.1 is of the type boost::log::sources::logger. This is the simplest logger.
When you want to write a log entry, use the macro BOOST_LOG and pass the logger as a parameter. The log
entry is created by writing data into the macro as if it is a stream of type std::ostream.

Example 62.1 Back-end, front-end, core, and logger

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/logger.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::log;

int main()

289

http://www.boost.org/libs/log

CHAPTER 62. BOOST.LOG

{
typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);

core::get()->add_sink(sink);

sources::logger lg;

BOOST_LOG(lg) << "note";
sink->flush();

}

Back-end, front-end, core, and logger work together. boost::log::sinks::asynchronous_sink, a front-
end, is a template that receives the back-end boost::log::sinks::text_ostream_backend as a parameter.
Afterwards, the front-end is instantiated with boost::shared_ptr. The smart pointer is required to register the
front-end in the core: the call to boost::log::core::add_sink() expects a boost::shared_ptr.
Because the back-end is a template parameter of the front-end, it can only be configured after the front-end has
been instantiated. The back-end determines how this is done. The member function add_stream() is provided
by the back-end boost::log::sinks::text_ostream_backend to add streams. You can add more than
one stream to boost::log::sinks::text_ostream_backend. Other back-ends provide different member
functions for configuration. Consult the documentation for details.
To get access to a back-end, all front-ends provide the member function locked_backend(). This member
function is called locked_backend() because it returns a pointer that provides synchronized access to the
back-end as long as the pointer exists. You can access a back-end through pointers returned by locked_back
end() from multiple threads without having to synchronize access yourself.
You can instantiate a logger like boost::log::sources::logger with the default constructor. The logger
automatically calls boost::log::core::get() to forward log entries to the core.
You can access loggers without macros. Loggers are objects with member functions you can call. However,
macros like BOOST_LOG make it easier to write log entries. Without macros it wouldn’t be possible to write a
log entry in one line of code.
Example 62.1 calls boost::log::sinks::asynchronous_sink::flush() at the end of main(). This call
is required because the front-end is asynchronous and uses a thread to forward log entries. The call makes sure
that all buffered log entries are passed to the back-end and are written. Without the call to flush(), the example
could terminate without displaying note.
Example 62.2 is based on Example 62.1, but it replaces boost::sources::logger with the logger boost::
sources::severity_logger. This logger adds an attribute for a log level to every log entry. You can use the
macro BOOST_LOG_SEV to set the log level.
The type of the log level depends on a template parameter passed to boost::sources::severity_logger.
Example 62.2 uses int. That’s why numbers like 0 and 1 are passed to BOOST_LOG_SEV. If BOOST_LOG is used,
the log level is set to 0.
Example 62.2 also calls set_filter() to register a filter at the front-end. The filter function is called for ev-
ery log entry. If the function returns true, the log entry is forwarded to the back-end. Example 62.2 defines the
function only_warnings() with a return value of type bool.
only_warnings() expects a parameter of type boost::log::attribute_value_set. This type represents
log entries while they are being passed around in the logging framework. boost::log::record is another type
for log entries that is like a wrapper for boost::log::attribute_value_set. This type provides the mem-
ber function attribute_values(), which retrieves a reference to the boost::log::attribute_value_
set. Filter functions receive a boost::log::attribute_value_set directly and no boost::log::rec
ord. boost::log::attribute_value_set stores key/value pairs. Think of it as a std::unordered_map.
Log entries consist of attributes. Attributes have a name and a value. You can create attributes yourself. They
can also be created automatically – for example by loggers. In fact, that’s why Boost.Log provides multiple log-
gers. boost::log::sources::severity_logger adds an attribute called Severity to every log entry. This
attribute stores the log level. That way a filter can check whether the log level of a log entry is greater than 0.
Example 62.2 boost::sources::severity_logger with a filter

#include <boost/log/common.hpp>

290

CHAPTER 62. BOOST.LOG

#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::log;

bool only_warnings(const attribute_value_set &set)
{

return set["Severity"].extract<int>() > 0;
}

int main()
{

typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);
sink->set_filter(&only_warnings);

core::get()->add_sink(sink);

sources::severity_logger<int> lg;

BOOST_LOG(lg) << "note";
BOOST_LOG_SEV(lg, 0) << "another note";
BOOST_LOG_SEV(lg, 1) << "warning";
sink->flush();

}

boost::log::attribute_value_set provides several member functions to access attributes. The member
functions are similar to the ones provided by std::unordered_map. For example, boost::log::attribute
_value_set overloads the operator operator[]. This operator returns the value of an attribute whose name is
passed as a parameter. If the attribute doesn’t exist, it is created.
The type of attribute names is boost::log::attribute_name. This class provides a constructor that accepts
a string, so you can pass a string directly to operator[], as in Example 62.2.
The type of attribute values is boost::log::attribute_value. This class provides member functions to
receive the value in the attribute’s original type. Because the log level is an int value, int is passed as a template
parameter to extract().
boost::log::attribute_value also defines the member functions extract_or_default() and extr
act_or_throw(). extract() returns a value created with the default constructor if a type conversion fails
– for example 0 in case of an int. extract_or_default() returns a default value which is passed as another
parameter to that member function. extract_or_throw() throws an exception of type boost::log::runtim
e_error in the event of an error.
For type-safe conversions, Boost.Log provides the visitor function boost::log::visit(), which you can use
instead of extract().
Example 62.2 displays warning. This log entry has a log level greater than 0 and thus isn’t filtered.
Example 62.3 Changing the format of a log entry with set_formatter()

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::log;

void severity_and_message(const record_view &view, formatting_ostream &os)
{

291

CHAPTER 62. BOOST.LOG

os << view.attribute_values()["Severity"].extract<int>() << ": " <<
view.attribute_values()["Message"].extract<std::string>();

}

int main()
{

typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);
sink->set_formatter(&severity_and_message);

core::get()->add_sink(sink);

sources::severity_logger<int> lg;

BOOST_LOG_SEV(lg, 0) << "note";
BOOST_LOG_SEV(lg, 1) << "warning";
sink->flush();

}

Example 62.3 is based on Example 62.2. This time the log level is displayed.
Front-ends provide the member function set_formatter(), which can be passed a format function. If a log
entry isn’t filtered by a front-end, it is forwarded to the format function. This function formats the log entry as a
string that is then passed from the front-end to the back-end. If you don’t call set_formatter(), by default the
back-end only receives what is on the right side of a macro like BOOST_LOG.
Example 62.3 passes the function severity_and_message() to set_formatter(). severity_and_me
ssage() expects parameters of type boost::log::record_view and boost::log::formatting_ostr
eam. boost::log::record_view is a view on a log entry. It’s similar to boost::log::record. However,
boost::log::record_view is an immutable log entry.
boost::log::record_view provides the member function attribute_values(), which returns a constant
reference to boost::log::attribute_value_set. boost::log::formatting_ostream is the stream
used to create the string that is passed to the back-end.
severity_and_message() accesses the attributes Severity and Message. extract() is called to get the at-
tribute values, which are then written to the stream. Severity returns the log level as an int value. Message pro-
vides access to what is on the right side of a macro like BOOST_LOG. Consult the documentation for a complete
list of available attribute names.
Example 62.3 uses no filter. The example writes two log entries: 0:note and 1:warning.
Example 62.4 uses both a filter and a format function. This time the functions are implemented as lambda func-
tions – not as C++11 lambda functions but as Boost.Phoenix lambda functions.
Boost.Log provides helpers for lambda functions in the namespace boost::log::expressions. For example,
boost::log::expressions::stream represents the stream. boost::log::expressions::smessage
provides access to everything on the right side of a macro like BOOST_LOG. You can use boost::log::expres
sions::attr() to access any attribute. Instead of smessage Example 62.4 could use attr<std::string>(
"Message").
Example 62.4 displays 1:warning and 2:error.
Example 62.4 Filtering log entries and formatting them with lambda functions

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/log/expressions.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::log;

int main()
{

292

CHAPTER 62. BOOST.LOG

typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);
sink->set_filter(expressions::attr<int>("Severity") > 0);
sink->set_formatter(expressions::stream <<

expressions::attr<int>("Severity") << ": " << expressions::smessage);

core::get()->add_sink(sink);

sources::severity_logger<int> lg;

BOOST_LOG_SEV(lg, 0) << "note";
BOOST_LOG_SEV(lg, 1) << "warning";
BOOST_LOG_SEV(lg, 2) << "error";
sink->flush();

}

Boost.Log supports user-defined keywords. You can use the macro BOOST_LOG_ATTRIBUTE_KEYWORD to define
keywords to access attributes without having to repeatedly pass attribute names as strings to boost::log::
expressions::attr().
Example 62.5 uses the macro BOOST_LOG_ATTRIBUTE_KEYWORD to define a keyword severity. The macro
expects three parameters: the name of the keyword, the attribute name as a string, and the type of the attribute.
The new keyword can be used in filter and format lambda functions. This means you are not restricted to using
keywords, such as boost::log::expressions::smessage, that are provided by Boost.Log – you can also
define new keywords.
Example 62.5 Defining keywords for attributes

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/log/expressions.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::log;

BOOST_LOG_ATTRIBUTE_KEYWORD(severity, "Severity", int)

int main()
{

typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);
sink->set_filter(severity > 0);
sink->set_formatter(expressions::stream << severity << ": " <<

expressions::smessage);

core::get()->add_sink(sink);

sources::severity_logger<int> lg;

BOOST_LOG_SEV(lg, 0) << "note";
BOOST_LOG_SEV(lg, 1) << "warning";
BOOST_LOG_SEV(lg, 2) << "error";
sink->flush();

}

293

CHAPTER 62. BOOST.LOG

In all of the examples so far, the attributes used are the ones defined in Boost.Log. Example 62.6 shows how to
create user-defined attributes.
You create a global attribute by calling add_global_attribute() on the core. The attribute is global because
it is added to every log entry automatically.
add_global_attribute() expects two parameters: the name and the type of the new attribute. The name is
passed as a string. For the type you use a class from the namespace boost::log::attributes, which pro-
vides classes to define different attributes. Example 62.6 uses boost::log::attributes::counter to define
the attribute LineCounter, which adds a line number to every log entry. This attribute will number log entries
starting at 1.
add_global_attribute() is not a function template. boost::log::attributes::counter isn’t passed
as a template parameter. The attribute type must be instantiated and passed as an object.
Example 62.6 Defining attributes
#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/log/expressions.hpp>
#include <boost/log/attributes.hpp>
#include <boost/log/support/date_time.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::log;

BOOST_LOG_ATTRIBUTE_KEYWORD(severity, "Severity", int)
BOOST_LOG_ATTRIBUTE_KEYWORD(counter, "LineCounter", int)
BOOST_LOG_ATTRIBUTE_KEYWORD(timestamp, "Timestamp",

boost::posix_time::ptime)

int main()
{

typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);
sink->set_filter(severity > 0);
sink->set_formatter(expressions::stream << counter << " - " << severity <<

": " << expressions::smessage << " (" << timestamp << ")");

core::get()->add_sink(sink);
core::get()->add_global_attribute("LineCounter",

attributes::counter<int>{});

sources::severity_logger<int> lg;

BOOST_LOG_SEV(lg, 0) << "note";
BOOST_LOG_SEV(lg, 1) << "warning";
{

BOOST_LOG_SCOPED_LOGGER_ATTR(lg, "Timestamp", attributes::local_clock{})
BOOST_LOG_SEV(lg, 2) << "error";

}
BOOST_LOG_SEV(lg, 2) << "another error";
sink->flush();

}

Example 62.6 uses a second attribute called Timestamp. This is a scoped attribute that is created with BOOST
_LOG_SCOPED_LOGGER_ATTR. This macro adds an attribute to a logger. The first parameter is the logger, the
second is the attribute name, and the third is the attribute object. The type of the attribute object is boost::log:
:attribute::local_clock. The attribute is set to the current time for each log entry.

294

CHAPTER 62. BOOST.LOG

The attribute Timestamp is added to the log entry “error” only. Timestamp exists only in the scope where BOOST
_LOG_SCOPED_LOGGER_ATTR is used. When the scope ends, the attribute is removed. BOOST_LOG_SCOPED_LO
GGER_ATTR is similar to a call to add_attribute() and remove_attribute().
Example 62.7 Helper functions for filters and formats

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/log/expressions.hpp>
#include <boost/log/attributes.hpp>
#include <boost/log/support/date_time.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <iomanip>

using namespace boost::log;

BOOST_LOG_ATTRIBUTE_KEYWORD(severity, "Severity", int)
BOOST_LOG_ATTRIBUTE_KEYWORD(counter, "LineCounter", int)
BOOST_LOG_ATTRIBUTE_KEYWORD(timestamp, "Timestamp",

boost::posix_time::ptime)

int main()
{

typedef sinks::asynchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);
sink->set_filter(expressions::is_in_range(severity, 1, 3));
sink->set_formatter(expressions::stream << std::setw(5) << counter <<

" - " << severity << ": " << expressions::smessage << " (" <<
expressions::format_date_time(timestamp, "%H:%M:%S") << ")");

core::get()->add_sink(sink);
core::get()->add_global_attribute("LineCounter",

attributes::counter<int>{});

sources::severity_logger<int> lg;

BOOST_LOG_SEV(lg, 0) << "note";
BOOST_LOG_SEV(lg, 1) << "warning";
{

BOOST_LOG_SCOPED_LOGGER_ATTR(lg, "Timestamp", attributes::local_clock{})
BOOST_LOG_SEV(lg, 2) << "error";

}
BOOST_LOG_SEV(lg, 2) << "another error";
sink->flush();

}

As in Example 62.5, Example 62.6 uses the macro BOOST_LOG_ATTRIBUTE_KEYWORD to define keywords for
the new attributes. The format function accesses the keywords to write the line number and current time. The
value of timestamp will be an empty string for those log entries where the attribute Timestamp is undefined.
Boost.Log provides numerous helper functions for filters and formats. Example 62.7 calls the helper boost::
log::expressions::is_in_range() to filter log entries whose log level is outside a range. boost::log:
:expressions::is_in_range() expects the attribute as its first parameter and lower and upper bounds as its
second and third parameters. As with iterators, the upper bound is exclusive and doesn’t belong to the range.
boost::log::expressions::format_date_time() is called in the format function. It is used to format a
timepoint. Example 62.7 uses boost::log::expressions::format_date_time() to write the time with-
out a date. You can also use manipulators from the standard library in format functions. Example 62.7 uses std:
:setw() to set the width for the counter.

295

CHAPTER 62. BOOST.LOG

Example 62.8 uses several loggers, front-ends, and back-ends. In addition to using the classes boost::log::
sinks::asynchronous_sink, boost::log::sinks::text_ostream_backend and boost::log::sour
ces::severity_logger, the example also uses the front-end boost::log::sinks::synchronous_sink,
the back-end boost::log::sinks::text_multifile_backend, and the logger boost::log::sources::
channel_logger.
The front-end boost::log::sinks::synchronous_sink provides synchronous access to a back-end, which
lets you use a back-end in a multithreaded application even if the back-end isn’t thread safe.
The difference between the two front-ends boost::log::sinks::asynchronous_sink and boost::log::
sinks::synchronous_sink is that the latter isn’t based on a thread. Log entries are passed to the back-end in
the same thread.
Example 62.8 uses the front-end boost::log::sinks::synchronous_sink with the back-end boost::
log::sinks::text_multifile_backend. This back-end writes log entries to one or more files. File names
are created according to a rule passed by set_file_name_composer() to the back-end. If you use the free-
standing function boost::log::sinks::file::as_file_name_composer(), as in the example, the rule
can be created as a lambda function with the same building blocks used for format functions. However, the at-
tributes aren’t used to create the string that is written to a back-end. Instead, the string will be the name of the file
that log entries will be written to.
Example 62.8 uses the keywords channel and severity, which are defined with the macro BOOST_LOG_ATT
RIBUTE_KEYWORD. They refer to the attributes Channel and Severity. The member function or_default() is
called on the keywords to pass a default value if an attribute isn’t set. If a log entry is written and Channel and
Severity are not set, the entry is written to the file None-0.log. If a log entry is written with the log level 1, it
is stored in the file None-1.log. If the log level is 1 and the channel is called Main, the log entry is saved in
the file Main-1.log.
The attribute Channel is defined by the logger boost::log::sources::channel_logger. The constructor
expects a channel name. The name can’t be passed directly as a string. Instead, it must be passed as a named pa-
rameter. That’s why the example uses keywords::channel ="Main" even though boost::log::sources:
:channel_logger doesn’t accept any other parameters.
Example 62.8 Several loggers, front-ends, and back-ends

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/severity_logger.hpp>
#include <boost/log/sources/channel_logger.hpp>
#include <boost/log/expressions.hpp>
#include <boost/log/attributes.hpp>
#include <boost/log/utility/string_literal.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <string>

using namespace boost::log;

BOOST_LOG_ATTRIBUTE_KEYWORD(severity, "Severity", int)
BOOST_LOG_ATTRIBUTE_KEYWORD(channel, "Channel", std::string)

int main()
{

typedef sinks::asynchronous_sink<sinks::text_ostream_backend>
ostream_sink;

boost::shared_ptr<ostream_sink> ostream =
boost::make_shared<ostream_sink>();

boost::shared_ptr<std::ostream> clog{&std::clog,
boost::empty_deleter{}};

ostream->locked_backend()->add_stream(clog);
core::get()->add_sink(ostream);

typedef sinks::synchronous_sink<sinks::text_multifile_backend>
multifile_sink;

boost::shared_ptr<multifile_sink> multifile =
boost::make_shared<multifile_sink>();

multifile->locked_backend()->set_file_name_composer(

296

CHAPTER 62. BOOST.LOG

sinks::file::as_file_name_composer(expressions::stream <<
channel.or_default<std::string>("None") << "-" <<
severity.or_default(0) << ".log"));

core::get()->add_sink(multifile);

sources::severity_logger<int> severity_lg;
sources::channel_logger<> channel_lg{keywords::channel = "Main"};

BOOST_LOG_SEV(severity_lg, 1) << "severity message";
BOOST_LOG(channel_lg) << "channel message";
ostream->flush();

}

Please note that the named parameter boost::log::keywords::channel has nothing to do with the key-
words you create with the macro BOOST_LOG_ATTRIBUTE_KEYWORD.
boost::log::sources::channel_logger identifies log entries from different components of a program.
Components can use their own objects of type boost::log::sources::channel_logger, giving them unique
names. If components only access their own loggers, it’s clear which component a particular log entry came
from.
Example 62.9 Handling exceptions centrally
#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/logger.hpp>
#include <boost/log/utility/exception_handler.hpp>
#include <boost/log/exceptions.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <exception>

using namespace boost::log;

struct handler
{

void operator()(const runtime_error &ex) const
{

std::cerr << "boost::log::runtime_error: " << ex.what() << '\n';
}

void operator()(const std::exception &ex) const
{

std::cerr << "std::exception: " << ex.what() << '\n';
}

};

int main()
{

typedef sinks::synchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);

core::get()->add_sink(sink);
core::get()->set_exception_handler(

make_exception_handler<runtime_error, std::exception>(handler{}));

sources::logger lg;

BOOST_LOG(lg) << "note";
}

297

CHAPTER 62. BOOST.LOG

Boost.Log provides the option to handle exceptions in the logging framework centrally. This means you don’t
need to wrap every BOOST_LOG in a try block to handle exceptions in catch.
Example 62.9 calls the member function set_exception_handler(). The core provides this member function
to register a handler. All exceptions in the logging framework will be passed to that handler. The handler is im-
plemented as a function object. It has to overload operator() for every exception type expected. An instance
of that function object is passed to set_exception_handler() through the function template boost::log::
make_exception_handler(). All exception types you want to handle must be passed as template parameters
to boost::log::make_exception_handler().
The function boost::log::make_exception_suppressor() let’s you discard all exceptions in the logging
framework. You call this function instead of boost::log::make_exception_handler().
Example 62.10 A macro to define a global logger

#include <boost/log/common.hpp>
#include <boost/log/sinks.hpp>
#include <boost/log/sources/logger.hpp>
#include <boost/utility/empty_deleter.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <exception>

using namespace boost::log;

BOOST_LOG_INLINE_GLOBAL_LOGGER_DEFAULT(lg, sources::wlogger_mt)

int main()
{

typedef sinks::synchronous_sink<sinks::text_ostream_backend> text_sink;
boost::shared_ptr<text_sink> sink = boost::make_shared<text_sink>();

boost::shared_ptr<std::ostream> stream{&std::clog,
boost::empty_deleter{}};

sink->locked_backend()->add_stream(stream);

core::get()->add_sink(sink);

BOOST_LOG(lg::get()) << L"note";
}

All of the examples in this chapter use local loggers. If you want to define a global logger, use the macro BOOS
T_LOG_INLINE_GLOBAL_LOGGER_DEFAULT as in Example 62.10. You pass the name of the logger as the first
parameter and the type as the second. You don’t access the logger through its name. Instead, you call get(),
which returns a pointer to a singleton.
Boost.Log provides additional macros such as BOOST_LOG_INLINE_GLOBAL_LOGGER_CTOR_ARGS. They let
you initialize global loggers. BOOST_LOG_INLINE_GLOBAL_LOGGER_CTOR_ARGS lets you pass parameters to
the constructor of a global logger. All of these macros guarantee that global loggers will be correctly initialized.
Boost.Log provides many more functions that are worth a look. For example, you can configure the logging
framework through a container with key/value pairs as strings. Then, you don’t need to instantiate classes and
call member functions. For example, a key Destination can be set to Console, which will automatically make the
logging framework use the back-end boost::log::sinks::text_ostream_backend. The back-end can be
configured through additional key/value pairs. Because the container can also be serialized in an INI-file, it is
possible to store the configuration in a text file and initialize the logging framework with that file.

298

Chapter 63

Boost.ProgramOptions

Boost.ProgramOptions is a library that makes it easy to parse command-line options, for example, for console
applications. If you develop applications with a graphical user interface, command-line options are usually not
important.
To parse command-line options with Boost.ProgramOptions, the following three steps are required:

1. Define command-line options. You give them names and specify which ones can be set to a value. If a
command-line option is parsed as a key/value pair, you also set the type of the value – for example, whether
it is a string or a number.

2. Use a parser to evaluate the command line. You get the command line from the two parameters of main(),
which are usually called argc and argv.

3. Store the command-line options evaluated by the parser. Boost.ProgramOptions offers a class derived from
std::map that saves command-line options as name/value pairs. Afterwards, you can check which op-
tions have been stored and what their values are.

Example 63.1 shows the basic approach for parsing command-line options with Boost.ProgramOptions.
Example 63.1 Basic approach with Boost.ProgramOptions

#include <boost/program_options.hpp>
#include <iostream>

using namespace boost::program_options;

void on_age(int age)
{

std::cout << "On age: " << age << '\n';
}

int main(int argc, const char *argv[])
{

try
{

options_description desc{"Options"};
desc.add_options()

("help,h", "Help screen")
("pi", value<float>()->default_value(3.14f), "Pi")
("age", value<int>()->notifier(on_age), "Age");

variables_map vm;
store(parse_command_line(argc, argv, desc), vm);
notify(vm);

if (vm.count("help"))
std::cout << desc << '\n';

else if (vm.count("age"))
std::cout << "Age: " << vm["age"].as<int>() << '\n';

else if (vm.count("pi"))

299

http://www.boost.org/libs/program_options

CHAPTER 63. BOOST.PROGRAMOPTIONS

std::cout << "Pi: " << vm["pi"].as<float>() << '\n';
}
catch (const error &ex)
{

std::cerr << ex.what() << '\n';
}

}

To use Boost.ProgramOptions, include the header file boost/program_options.hpp. You can access all
classes and functions from this library in the namespace boost::program_options.
Use the class boost::program_options::options_description to describe command-line options. An
object of this type can be written to a stream such as std::cout to display an overview of available command-
line options. The string passed to the constructor gives the overview a name that acts as a title for the command-
line options.
boost::program_options::options_description defines a member function add() that expects a pa-
rameter of type boost::program_options::option_description. You call this function to describe each
command-line option. Instead of calling this function for every command-line option, Example 63.1 calls the
member function add_options(), which makes that task easier.
add_options() returns a proxy object representing an object of type boost::program_options::option
s_description. The type of the proxy object doesn’t matter. It’s more interesting that the proxy object sim-
plifies defining many command-line options. It uses the overloaded operator operator(), which you can call
to pass the required data to define a command-line option. This operator returns a reference to the same proxy
object, which allows you to call operator() multiple times.
Example 63.1 defines three command-line options with the help of the proxy object. The first command-line op-
tion is --help. The description of this option is set to “Help screen”. The option is a switch, not a name/value
pair. You set --help on the command line or omit it. It’s not possible to set --help to a value.
Please note that the first string passed to operator() is “help,h”. You can specify short names for command-
line options. A short name must consist of just one letter and is set after a comma. Now the help can be displayed
with either --help or -h.
Besides --help, two more command-line options are defined: --pi and --age. These options aren’t switches,
they’re name/value pairs. Both --pi and --age expect to be set to a value.
You pass a pointer to an object of type boost::program_options::value_semantic as the second param-
eter to operator() to define an option as a name/value pair. You don’t need to access boost::program_opt
ions::value_semantic directly. You can use the helper function boost::program_options::value(),
which creates an object of type boost::program_options::value_semantic. boost::program_opti
ons::value() returns the object’s address, which you then can pass to the proxy object using operator().
boost::program_options::value() is a function template that takes the type of the command-line option
value as a template parameter. Thus, the command-line option --age expects an integer and --pi expects a
floating point number.
The object returned from boost::program_options::value() provides some useful member functions. For
example, you can call default_value() to provide a default value. Example 63.1 sets --pi to 3.14 if that op-
tion isn’t used on the command line.
notifier() links a function to a command-line option’s value. That function is then called with the value of the
command-line option. In Example 63.1, the function on_age() is linked to --age. If the command-line option
--age is used to set an age, the age is passed to on_age() which writes it to standard output.
Processing values with functions like on_age() is optional. You don’t have to use notifier() because it’s
possible to access values in other ways.
After all command-line options have been defined, you use a parser. In Example 63.1, the helper function boost:
:program_options::parse_command_line() is called to parse the command line. This function takes
argc and argv, which define the command line, and desc, which contains the option descriptions. boost:
:program_options::parse_command_line() returns the parsed options in an object of type boost::
program_options::parsed_options. You usually don’t access this object directly. Instead you pass it to
boost::program_options::store(), which stores the parsed options in a container.
Example 63.1 passes vm as a second parameter to boost::program_options::store(). vm is an object of
type boost::program_options::variables_map. This class is derived from the class std::map<std::string,
boost::program_options::variable_value> and, thus, provides the same member functions as std::map. For ex-
ample, you can call count() to check whether a certain command-line option has been used and is stored in the
container.

300

CHAPTER 63. BOOST.PROGRAMOPTIONS

In Example 63.1, before vm is accessed and count() is called, boost::program_options::notify() is
called. This function triggers functions, such as on_age(), that are linked to a value using notifier(). With-
out boost::program_options::notify(), on_age() would not be called.
vm lets you check whether a certain command-line option exists, and it also lets you access the value the command-
line option is set to. The value’s type is boost::program_options::variable_value, a class that uses
boost::any internally. You can get the object of type boost::any from the member function value().
Example 63.1 calls as(), not value(). This member function converts the value of a command-line option to
the type passed as a template parameter. as() uses boost::any_cast() for the type conversion.
Be sure the type you pass to as() matches the type of the command-line option. For example, Example 63.1
expects the command-line option --age to be set to a number of type int, so int must be passed as a template
parameter to as().
You can start Example 63.1 in many ways. Here is one example:

test

In this case Pi:3.14 is displayed. Because --pi isn’t set on the command line, the default value is displayed.
This example sets a value using --pi:

test --pi 3.1415

The program now displays Pi:3.1415.
This example also passes an age:

test --pi 3.1415 --age 29

The output is now On age:29 and Age:29. The first line is written when boost::program_options::not
ify() is called; this triggers the execution of on_age(). There is no output for --pi because the program uses
else if statements that only display the value set with --pi if --age is not set.
This example shows the help:

test -h

You get a complete overview on all command-line options:

Options:
-h [--help] Help screen
--pi arg (=3.1400001) Pi
--age arg Age

As you can see, the help can be shown in two different ways because a short name for that command-line option
was defined. For --pi the default value is displayed. The command-line options and their descriptions are for-
matted automatically. You only need to write the object of type boost::program_options::options_desc
ription to standard output as in Example 63.1.
Now, start the example like this:

test --age

The output is the following:

the required argument for option '--age' is missing.

Because --age isn’t set, the parser used in boost::program_options::parse_command_line() throws
an exception of type boost::program_options::error. The exception is caught, and an error message is
written to standard output.
boost::program_options::error is derived from std::logic_error. Boost.ProgramOptions defines ad-
ditional exceptions, which are all derived from boost::program_options::error. One of those exceptions
is boost::program_options::invalid_syntax, which is the exact exception thrown in Example 63.1 if
you don’t supply a value for --age.
Example 63.2 introduces more configuration settings available with Boost.ProgramOptions.

301

CHAPTER 63. BOOST.PROGRAMOPTIONS

Example 63.2 Special configuration settings with Boost.ProgramOptions

#include <boost/program_options.hpp>
#include <string>
#include <vector>
#include <algorithm>
#include <iterator>
#include <iostream>

using namespace boost::program_options;

void to_cout(const std::vector<std::string> &v)
{

std::copy(v.begin(), v.end(), std::ostream_iterator<std::string>{
std::cout, "\n"});

}

int main(int argc, const char *argv[])
{

try
{

int age;

options_description desc{"Options"};
desc.add_options()

("help,h", "Help screen")
("pi", value<float>()->implicit_value(3.14f), "Pi")
("age", value<int>(&age), "Age")
("phone", value<std::vector<std::string>>()->multitoken()->

zero_tokens()->composing(), "Phone")
("unreg", "Unrecognized options");

command_line_parser parser{argc, argv};
parser.options(desc).allow_unregistered().style(

command_line_style::default_style |
command_line_style::allow_slash_for_short);

parsed_options parsed_options = parser.run();

variables_map vm;
store(parsed_options, vm);
notify(vm);

if (vm.count("help"))
std::cout << desc << '\n';

else if (vm.count("age"))
std::cout << "Age: " << age << '\n';

else if (vm.count("phone"))
to_cout(vm["phone"].as<std::vector<std::string>>());

else if (vm.count("unreg"))
to_cout(collect_unrecognized(parsed_options.options,

exclude_positional));
else if (vm.count("pi"))

std::cout << "Pi: " << vm["pi"].as<float>() << '\n';
}
catch (const error &ex)
{

std::cerr << ex.what() << '\n';
}

}

Example 63.2 parses command-line options like the previous example does. However, there are some notable
differences. For example, implicit_value() is called, rather than default_value(), when defining the --
pi command-line option. This means that pi isn’t set to 3.14 by default. --pi must be set on the command line

302

CHAPTER 63. BOOST.PROGRAMOPTIONS

for pi to be available. However, you don’t need to supply a value to the --pi command-line option if you use
implicit_value(). It’s sufficient to pass --pi without setting a value. In that case, pi is set to 3.14 implicitly.
For the command-line option --age, a pointer to the variable age is passed to boost::program_options::
value(). This stores the value of a command-line option in a variable. Of course, the value is still available in
the container vm.
Please note that a value is only stored in age if boost::program_options::notify() is called. Even though
notifier() isn’t used in this example, boost::program_options::notify() still must be used. To avoid
problems, it’s a good idea to always call boost::program_options::notify() after parsed command-line
options have been stored with boost::program_options::store().
Example 63.2 supports a new command-line option --phone to pass a phone number to the program. In fact,
you can pass multiple phone numbers on the command line. For example, the following command line starts the
program with the phone numbers 123 and 456:

test --phone 123 456

Example 63.2 supports multiple phone numbers because multitoken() is called on this command-line option’s
value. And, since zero_tokens() is called, --phone can also be used without passing a phone number.
You can also pass multiple phone numbers by repeating the --phone option, as shown in the following com-
mand line:

test --phone 123 --phone 456

In this case, both phone numbers, 123 and 456, are parsed. The call to composing() makes it possible to use a
command-line option multiple times – the values are composed.
The value of the argument to --phone is of type std::vector<std::string>. You need to use a container to store
multiple phone numbers.
Example 63.2 defines another command-line option, --unreg. This is a switch that can’t be set to a value. It
is used later in the example to decide whether command-line options that aren’t defined in desc should be dis-
played.
While Example 63.1 calls the function boost::program_options::parse_command_line() to parse command-
line options, Example 63.2 uses a parser of type boost::program_options::command_line_parser. argc
and argv are passed to the constructor.
boost::program_options::command_line_parser provides several member functions. You must call
options() to pass the definition of command-line options to the parser.
Like other member functions, options() returns a reference to the same parser. That way, member functions
can be easily called one after another. Example 63.2 calls allow_unregistered() after options() to tell
the parser not to throw an exception if unknown command-line options are detected. Finally, style() is called
to tell the parser that short names can be used with a slash. Thus, the short name for the --help option can be
either -h or /h.
Please note that boost::program_options::parse_command_line() supports a fourth parameter, which
is forwarded to style(). If you want to use an option like boost::program_options::command_line_st
yle::allow_slash_for_short, you can still use the function boost::program_options::parse_comma
nd_line().
After the configuration has been set, call run() on the parser. This member function returns the parsed command-
line options in an object of type boost::program_options::parsed_options, which you can pass to boost:
:program_options::store() to store the options in vm.
Later in the code, Example 63.2 accesses vm again to evaluate command-line options. Only the call to boost::
program_options::collect_unrecognized() is new. This function is called for the command-line option
--unreg. The function expects an object of type boost::program_options::parsed_options, which is
returned by run(). It returns all unknown command-line options in a std::vector<std::string>. For example, if
you start the program with test --unreg --abc, --abc will be written to standard output.
When boost::program_options::exclude_positional is passed as the second parameter to boost:
:program_options::collect_unrecognized(), positional options are ignored. For Example 63.2, this
doesn’t matter because no positional options are defined. However, boost::program_options::collect_u
nrecognized() requires this parameter.
Example 63.3 illustrates positional options.
Example 63.3 Positional options with Boost.ProgramOptions

#include <boost/program_options.hpp>
#include <string>
#include <vector>

303

CHAPTER 63. BOOST.PROGRAMOPTIONS

#include <algorithm>
#include <iterator>
#include <iostream>

using namespace boost::program_options;

void to_cout(const std::vector<std::string> &v)
{

std::copy(v.begin(), v.end(),
std::ostream_iterator<std::string>{std::cout, "\n"});

}

int main(int argc, const char *argv[])
{

try
{

options_description desc{"Options"};
desc.add_options()

("help,h", "Help screen")
("phone", value<std::vector<std::string>>()->

multitoken()->zero_tokens()->composing(), "Phone");

positional_options_description pos_desc;
pos_desc.add("phone", -1);

command_line_parser parser{argc, argv};
parser.options(desc).positional(pos_desc).allow_unregistered();
parsed_options parsed_options = parser.run();

variables_map vm;
store(parsed_options, vm);
notify(vm);

if (vm.count("help"))
std::cout << desc << '\n';

else if (vm.count("phone"))
to_cout(vm["phone"].as<std::vector<std::string>>());

}
catch (const error &ex)
{

std::cerr << ex.what() << '\n';
}

}

Example 63.3 defines --phone as a positional option using the class boost::program_options::positio
nal_options_description. This class provides the member function add(), which expects the name of the
command-line option and a position to be passed. The example passes “phone” and -1.
With positional options, values can be set on the command line without using command-line options. You can
start Example 63.3 like this:

test 123 456

Even though --phone isn’t used, 123 and 456 are recognized as phone numbers.
Calling add() on an object of type boost::program_options::positional_options_description
assigns values on the command line to command-line options using position numbers. When Example 63.3 is
called using the command line test 123 456, 123 has the position number 0 and 456 has the position number 1.
Example 63.3 passes -1 to add(), which assigns all of the values – 123 and 456 – to --phone. If you changed
Example 63.3 to pass the value 0 to add(), only 123 would be recognized as a phone number. And if 1 was
passed to add(), only 456 would be recognized.
pos_desc is passed with positional() to the parser. That’s how the parser knows which command-line op-
tions are positional.
Please note that you have to make sure that positional options are defined. In Example 63.3, for example, “phone”
could only be passed to add() because a definition for --phone already existed in desc.

304

CHAPTER 63. BOOST.PROGRAMOPTIONS

In all previous examples, Boost.ProgramOptions was used to parse command-line options. However, the library
supports loading configuration options from a file, too. This can be useful if the same command-line options
have to be set repeatedly.
Example 63.4 uses two objects of type boost::program_options::options_description. generalOp
tions defines options that must be set on the command line. fileOptions defines options that can be loaded
from a configuration file.
It’s not mandatory to define options with two different objects of type boost::program_options::options
_description. You can use just one if the set of options is the same for both command line and file. In Exam-
ple 63.4, separating options makes sense because you don’t want to allow --help to be set in the configuration
file. If that was allowed and the user put that option in the configuration file, the program would display the help
screen every time.
Example 63.4 loads --age from a configuration file. You can pass the name of the configuration file as a command-
line option. In this example, --config is defined in generalOptions for that reason.
After the command-line options have been parsed with boost::program_options::parse_command_l
ine() and stored in vm, the example checks whether --config is set. If it is, the configuration file is opened
with std::ifstream. The std::ifstream object is passed to the function boost::program_options:
:parse_config_file() along with fileOptions, which describes the options. boost::program_opt
ions::parse_config_file() does the same thing as boost::program_options::parse_command_l
ine() and returns parsed options in an object of type boost::program_options::parsed_options. This
object is passed to boost::program_options::store() to store the parsed options in vm.
Example 63.4 Loading options from a configuration file
#include <boost/program_options.hpp>
#include <string>
#include <fstream>
#include <iostream>

using namespace boost::program_options;

int main(int argc, const char *argv[])
{

try
{

options_description generalOptions{"General"};
generalOptions.add_options()

("help,h", "Help screen")
("config", value<std::string>(), "Config file");

options_description fileOptions{"File"};
fileOptions.add_options()

("age", value<int>(), "Age");

variables_map vm;
store(parse_command_line(argc, argv, generalOptions), vm);
if (vm.count("config"))
{

std::ifstream ifs{vm["config"].as<std::string>().c_str()};
if (ifs)

store(parse_config_file(ifs, fileOptions), vm);
}
notify(vm);

if (vm.count("help"))
std::cout << generalOptions << '\n';

else if (vm.count("age"))
std::cout << "Your age is: " << vm["age"].as<int>() << '\n';

}
catch (const error &ex)
{

std::cerr << ex.what() << '\n';
}

}

305

CHAPTER 63. BOOST.PROGRAMOPTIONS

If you create a file called config.txt, put age=29 in that file, and execute the command line below, you will
get the result shown.

test --config config.txt

The output is the following:

Your age is: 29

If you support the same options on the command line and in a configuration file, your program may parse the
same option twice – once with boost::program_options::parse_command_line() and once with boost:
:program_options::parse_config_file(). The order of the function calls determines which value you
will find in vm. Once a command-line option’s value has been stored in vm, that value will not be overwritten.
Whether the value is set by an option on the command line or in a configuration file depends only on the order in
which you call the store() function.
Boost.ProgramOptions also defines the function boost::program_options::parse_environment(), which
can be used to load options from environment variables. The class boost::environment_iterator lets you
iterate over environment variables.

306

Chapter 64

Boost.Serialization

The library Boost.Serialization makes it possible to convert objects in a C++ program to a sequence of bytes that
can be saved and loaded to restore the objects. There are different data formats available to define the rules for
generating sequences of bytes. All of the formats supported by Boost.Serialization are only intended for use with
this library. For example, the XML format developed for Boost.Serialization should not be used to exchange data
with programs that do not use Boost.Serialization. The only advantage of the XML format is that it can make
debugging easier since C++ objects are saved in a readable format.

Note

As outlined in the release notes of version 1.55.0 of the Boost libraries, a missing include
causes a compiler error with Visual C++ 2013. This bug has been fixed in Boost 1.56.0.

64.1 Archive
The main concept of Boost.Serialization is the archive. An archive is a sequence of bytes that represent serialized
C++ objects. Objects can be added to an archive to serialize them and then later loaded from the archive. In order
to restore previously saved C++ objects, the same types are presumed.
Boost.Serialization provides archive classes such as boost::archive::text_oarchive, which is defined in
boost/archive/text_oarchive.hpp. This class makes it possible to serialize objects as a text stream.
With Boost 1.56.0, Example 64.1 writes 22 serialization::archive 11 1 to the standard output stream.
Example 64.1 Using boost::archive::text_oarchive

#include <boost/archive/text_oarchive.hpp>
#include <iostream>

using namespace boost::archive;

int main()
{

text_oarchive oa{std::cout};
int i = 1;
oa << i;

}

As can be seen, the object oa of type boost::archive::text_oarchive can be used like a stream to seri-
alize a variable using operator<<. However, archives should not be considered as regular streams that store
arbitrary data. To restore data, you must access it as you stored it, using the same data types in the same order.
Example 64.2 serializes and restores a variable of type int.
Example 64.2 Using boost::archive::text_iarchive

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>

307

http://www.boost.org/libs/serialization
http://www.boost.org/users/history/version_1_55_0.html

CHAPTER 64. BOOST.SERIALIZATION 64.1. ARCHIVE

#include <iostream>
#include <fstream>

using namespace boost::archive;

void save()
{

std::ofstream file{"archive.txt"};
text_oarchive oa{file};
int i = 1;
oa << i;

}

void load()
{

std::ifstream file{"archive.txt"};
text_iarchive ia{file};
int i = 0;
ia >> i;
std::cout << i << '\n';

}

int main()
{

save();
load();

}

The class boost::archive::text_oarchive serializes data as a text stream, and the class boost::arc
hive::text_iarchive restores data from such a text stream. To use these classes, include the header files
boost/archive/text_iarchive.hpp and boost/archive/text_oarchive.hpp.
Constructors of archives expect an input or output stream as a parameter. The stream is used to serialize or re-
store data. While Example 64.2 accesses a file, other streams, such as a stringstream, can also be used.
Example 64.3 Serializing with a stringstream
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

void save()
{

text_oarchive oa{ss};
int i = 1;
oa << i;

}

void load()
{

text_iarchive ia{ss};
int i = 0;
ia >> i;
std::cout << i << '\n';

}

int main()
{

save();
load();

}

308

CHAPTER 64. BOOST.SERIALIZATION 64.1. ARCHIVE

Example 64.3 writes 1 to standard output using a stringstream to serialize data.
So far, only primitive types have been serialized. Example 64.4 shows how to serialize objects of user-defined
types. In order to serialize objects of user-defined types, you must define the member function serialize().
This function is called when the object is serialized to or restored from a byte stream. Because serialize() is
used for both serializing and restoring, Boost.Serialization supports the operator operator& in addition to ope
rator<< and operator>>. With operator& there is no need to distinguish between serializing and restoring
within serialize().
Example 64.4 Serializing user-defined types with a member function

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
int legs() const { return legs_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

void save()
{

text_oarchive oa{ss};
animal a{4};
oa << a;

}

void load()
{

text_iarchive ia{ss};
animal a;
ia >> a;
std::cout << a.legs() << '\n';

}

int main()
{

save();
load();

}

serialize() is automatically called any time an object is serialized or restored. It should never be called ex-
plicitly and, thus, should be declared as private. If it is declared as private, the class boost::serialization:
:access must be declared as a friend to allow Boost.Serialization to access the member function.
Example 64.5 Serializing with a free-standing function

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <iostream>

309

CHAPTER 64. BOOST.SERIALIZATION 64.1. ARCHIVE

#include <sstream>

using namespace boost::archive;

std::stringstream ss;

struct animal
{

int legs_;

animal() = default;
animal(int legs) : legs_{legs} {}
int legs() const { return legs_; }

};

template <typename Archive>
void serialize(Archive &ar, animal &a, const unsigned int version)
{

ar & a.legs_;
}

void save()
{

text_oarchive oa{ss};
animal a{4};
oa << a;

}

void load()
{

text_iarchive ia{ss};
animal a;
ia >> a;
std::cout << a.legs() << '\n';

}

int main()
{

save();
load();

}

There may be situations that do not you allow to modify an existing class in order to add serialize(). For
example, this is true for classes from the standard library.
In order to serialize types that cannot be modified, the free-standing function serialize() can be defined as
shown in Example 64.5. This function expects a reference to an object of the corresponding type as its second
parameter.
Implementing serialize() as a free-standing function requires that essential member variables of a class can
be accessed from outside. In Example 64.5, serialize() can only be implemented as a free-standing function
since legs_ is no longer a private member variable of the class animal.
Boost.Serialization provides serialize() functions for many classes from the standard library. To serialize
objects based on standard classes, additional header files need to be included.
Example 64.6 Serializing strings

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/string.hpp>
#include <iostream>
#include <sstream>
#include <string>
#include <utility>

using namespace boost::archive;

310

CHAPTER 64. BOOST.SERIALIZATION 64.1. ARCHIVE

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs, std::string name) :

legs_{legs}, name_{std::move(name)} {}
int legs() const { return legs_; }
const std::string &name() const { return name_; }

private:
friend class boost::serialization::access;

template <typename Archive>
friend void serialize(Archive &ar, animal &a, const unsigned int version);

int legs_;
std::string name_;

};

template <typename Archive>
void serialize(Archive &ar, animal &a, const unsigned int version)
{

ar & a.legs_;
ar & a.name_;

}

void save()
{

text_oarchive oa{ss};
animal a{4, "cat"};
oa << a;

}

void load()
{

text_iarchive ia{ss};
animal a;
ia >> a;
std::cout << a.legs() << '\n';
std::cout << a.name() << '\n';

}

int main()
{

save();
load();

}

Example 64.6 extends the class animal by adding name_, a member variable of type std::string. In order to
serialize this member variable, the header file boost/serialization/string.hpp must be included to
provide the appropriate free-standing function serialize().
As mentioned before, Boost.Serialization defines serialize() functions for many classes from the standard
library. These functions are defined in header files that carry the same name as the corresponding header files
from the standard. So, to serialize objects of type std::string, include the header file boost/serialization/
string.hpp and to serialize objects of type std::vector, include the header file boost/serialization/
vector.hpp. It is fairly obvious which header file to include.
One parameter of serialize() that has been ignored so far is version. This parameter helps make archives
backward compatible. Example 64.7 can load an archive that was created by Example 64.5. The version of the
class animal in Example 64.5 did not contain a name. Example 64.7 checks the version number when loading
an archive and only accesses the name if the version is greater than 0. This allows it to handle an older archive

311

CHAPTER 64. BOOST.SERIALIZATION 64.1. ARCHIVE

that was created without name.
The macro BOOST_CLASS_VERSION assigns a version number to a class. The version number for the class ani
mal in Example 64.7 is 1. If BOOST_CLASS_VERSION is not used, the version number is 0 by default.
Example 64.7 Backward compatibility with version numbers

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/string.hpp>
#include <iostream>
#include <sstream>
#include <string>
#include <utility>

using namespace boost::archive;

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs, std::string name) :

legs_{legs}, name_{std::move(name)} {}
int legs() const { return legs_; }
const std::string &name() const { return name_; }

private:
friend class boost::serialization::access;

template <typename Archive>
friend void serialize(Archive &ar, animal &a, const unsigned int version);

int legs_;
std::string name_;

};

template <typename Archive>
void serialize(Archive &ar, animal &a, const unsigned int version)
{

ar & a.legs_;
if (version > 0)

ar & a.name_;
}

BOOST_CLASS_VERSION(animal, 1)

void save()
{

text_oarchive oa{ss};
animal a{4, "cat"};
oa << a;

}

void load()
{

text_iarchive ia{ss};
animal a;
ia >> a;
std::cout << a.legs() << '\n';
std::cout << a.name() << '\n';

}

int main()
{

312

CHAPTER 64. BOOST.SERIALIZATION 64.2. POINTERS AND REFERENCES

save();
load();

}

The version number is stored in the archive and is part of it. While the version number specified for a particular
class via the BOOST_CLASS_VERSION macro is used during serialization, the parameter version of serial
ize() is set to the value stored in the archive when restoring. If the new version of animal accesses an archive
containing an object serialized with the old version, the member variable name_ would not be restored because
the old version did not have such a member variable.

64.2 Pointers and References
Boost.Serialization can also serialize pointers and references. Because a pointer stores the address of an object,
serializing the address does not make much sense. When serializing pointers and references, the referenced ob-
ject is serialized.
Example 64.8 creates a new object of type animal with new and assigns it to the pointer a. The pointer – not *a
– is then serialized. Boost.Serialization automatically serializes the object referenced by a and not the address of
the object.
If the archive is restored, a will not necessarily contain the same address. A new object is created and its address
is assigned to a instead. Boost.Serialization only guarantees that the object is the same as the one serialized, not
that its address is the same.
Because smart pointers are used in connection with dynamically allocated memory, Boost.Serialization provides
also support for them.
Example 64.8 Serializing pointers

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <iostream>
#include <sstream>

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
int legs() const { return legs_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

void save()
{

boost::archive::text_oarchive oa{ss};
animal *a = new animal{4};
oa << a;
std::cout << std::hex << a << '\n';
delete a;

}

void load()
{

boost::archive::text_iarchive ia{ss};
animal *a;

313

CHAPTER 64. BOOST.SERIALIZATION 64.2. POINTERS AND REFERENCES

ia >> a;
std::cout << std::hex << a << '\n';
std::cout << std::dec << a->legs() << '\n';
delete a;

}

int main()
{

save();
load();

}

Example 64.9 Serializing smart pointers
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/scoped_ptr.hpp>
#include <boost/scoped_ptr.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
int legs() const { return legs_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

void save()
{

text_oarchive oa{ss};
boost::scoped_ptr<animal> a{new animal{4}};
oa << a;

}

void load()
{

text_iarchive ia{ss};
boost::scoped_ptr<animal> a;
ia >> a;
std::cout << a->legs() << '\n';

}

int main()
{

save();
load();

}

Example 64.9 uses the smart pointer boost::scoped_ptr to manage a dynamically allocated object of type
animal. Include the header file boost/serialization/scoped_ptr.hpp to serialize such a pointer.

314

CHAPTER 64. BOOST.SERIALIZATION 64.3. SERIALIZATION OF CLASS HIERARCHY…

To serialize a smart pointer of type boost::shared_ptr, use the header file boost/serialization/
shared_ptr.hpp.
Example 64.10 Serializing references

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
int legs() const { return legs_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

void save()
{

text_oarchive oa{ss};
animal a{4};
animal &r = a;
oa << r;

}

void load()
{

text_iarchive ia{ss};
animal a;
animal &r = a;
ia >> r;
std::cout << r.legs() << '\n';

}

int main()
{

save();
load();

}

Please note that Boost.Serialization hasn’t been updated for C++11, yet. Smart pointers from the C++11 standard
library like std::shared_ptr and std::unique_ptr are not currently supported by Boost.Serialization.
Boost.Serialization can also serialize references without any issues (see Example 64.10). Just as with pointers,
the referenced object is serialized automatically.

64.3 Serialization of Class Hierarchy Objects
Derived classes must access the function boost::serialization::base_object() inside the member func-
tion serialize() to serialize objects based on class hierarchies. This function guarantees that inherited mem-
ber variables of base classes are correctly serialized.

315

CHAPTER 64. BOOST.SERIALIZATION 64.3. SERIALIZATION OF CLASS HIERARCHY…

Example 64.11 uses a class called bird, which is derived from animal. Both animal and bird define a private
member function serialize() that makes it possible to serialize objects based on either class. Because bird is
derived from animal, serialize() must ensure that member variables inherited from animal are serialized,
too.
Inherited member variables are serialized by accessing the base class inside the member function serialize()
of the derived class and calling boost::serialization::base_object(). You must use this function rather
than, for example, static_cast because only boost::serialization::base_object() ensures correct
serialization.
Example 64.11 Serializing derived classes correctly

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;
std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
int legs() const { return legs_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

class bird : public animal
{
public:

bird() = default;
bird(int legs, bool can_fly) :

animal{legs}, can_fly_{can_fly} {}
bool can_fly() const { return can_fly_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version)
{

ar & boost::serialization::base_object<animal>(*this);
ar & can_fly_;

}

bool can_fly_;
};

void save()
{

text_oarchive oa{ss};
bird penguin{2, false};
oa << penguin;

}

void load()
{

316

CHAPTER 64. BOOST.SERIALIZATION 64.3. SERIALIZATION OF CLASS HIERARCHY…

text_iarchive ia{ss};
bird penguin;
ia >> penguin;
std::cout << penguin.legs() << '\n';
std::cout << std::boolalpha << penguin.can_fly() << '\n';

}

int main()
{

save();
load();

}

Addresses of dynamically created objects can be assigned to pointers of the corresponding base class type. Ex-
ample 64.12 shows that Boost.Serialization can serialize them correctly as well.
Example 64.12 Registering derived classes statically with BOOST_CLASS_EXPORT

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/export.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
virtual int legs() const { return legs_; }
virtual ~animal() = default;

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

class bird : public animal
{
public:

bird() = default;
bird(int legs, bool can_fly) :

animal{legs}, can_fly_{can_fly} {}
bool can_fly() const { return can_fly_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version)
{

ar & boost::serialization::base_object<animal>(*this);
ar & can_fly_;

}

bool can_fly_;
};

317

CHAPTER 64. BOOST.SERIALIZATION 64.3. SERIALIZATION OF CLASS HIERARCHY…

BOOST_CLASS_EXPORT(bird)

void save()
{

text_oarchive oa{ss};
animal *a = new bird{2, false};
oa << a;
delete a;

}

void load()
{

text_iarchive ia{ss};
animal *a;
ia >> a;
std::cout << a->legs() << '\n';
delete a;

}

int main()
{

save();
load();

}

The program creates an object of type bird inside the function save() and assigns it to a pointer of type ani-
mal*, which in turn is serialized via operator<<.
As mentioned in the previous section, the referenced object is serialized, not the pointer. To have Boost.Serialization
recognize that an object of type bird must be serialized, even though the pointer is of type animal*, the class
bird needs to be declared. This is done using the macro BOOST_CLASS_EXPORT, which is defined in boost/
serialization/export.hpp. Because the type bird does not appear in the pointer definition, Boost.Serialization
cannot serialize an object of type bird correctly without the macro.
The macro BOOST_CLASS_EXPORT must be used if objects of derived classes are to be serialized using a pointer
to their corresponding base class. A disadvantage of BOOST_CLASS_EXPORT is that, because of static registra-
tion, classes can be registered that may not be used for serialization at all. Boost.Serialization offers a solution
for this scenario.
Instead of using the macro BOOST_CLASS_EXPORT, Example 64.13 calls the member function template regist
er_type(). The type to be registered is passed as a template parameter. Note that register_type() must be
called both in save() and load().
The advantage of register_type() is that only classes used for serialization must be registered. For example,
when developing a library, one does not know which classes a developer may use for serialization later. While
the macro BOOST_CLASS_EXPORT makes this easy, it may register types that are not going to be used for serial-
ization.
Example 64.13 Registering derived classes dynamically with register_type()

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/export.hpp>
#include <iostream>
#include <sstream>

std::stringstream ss;

class animal
{
public:

animal() = default;
animal(int legs) : legs_{legs} {}
virtual int legs() const { return legs_; }
virtual ~animal() = default;

private:

318

CHAPTER 64. BOOST.SERIALIZATION 64.4. WRAPPER FUNCTIONS FOR OPTIMIZATION

friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version) { ar & legs_; }

int legs_;
};

class bird : public animal
{
public:

bird() = default;
bird(int legs, bool can_fly) :

animal{legs}, can_fly_{can_fly} {}
bool can_fly() const { return can_fly_; }

private:
friend class boost::serialization::access;

template <typename Archive>
void serialize(Archive &ar, const unsigned int version)
{

ar & boost::serialization::base_object<animal>(*this);
ar & can_fly_;

}

bool can_fly_;
};

void save()
{

boost::archive::text_oarchive oa{ss};
oa.register_type<bird>();
animal *a = new bird{2, false};
oa << a;
delete a;

}

void load()
{

boost::archive::text_iarchive ia{ss};
ia.register_type<bird>();
animal *a;
ia >> a;
std::cout << a->legs() << '\n';
delete a;

}

int main()
{

save();
load();

}

64.4 Wrapper Functions for Optimization
This section introduces wrapper functions to optimize the serialization process. These functions mark objects to
allow Boost.Serialization to apply certain optimization techniques.
Example 64.14 Serializing an array without a wrapper function

#include <boost/archive/text_oarchive.hpp>

319

CHAPTER 64. BOOST.SERIALIZATION 64.4. WRAPPER FUNCTIONS FOR OPTIMIZATION

#include <boost/archive/text_iarchive.hpp>
#include <boost/array.hpp>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

void save()
{

text_oarchive oa{ss};
boost::array<int, 3> a{{0, 1, 2}};
oa << a;

}

void load()
{

text_iarchive ia{ss};
boost::array<int, 3> a;
ia >> a;
std::cout << a[0] << ", " << a[1] << ", " << a[2] << '\n';

}

int main()
{

save();
load();

}

Example 64.14 uses Boost.Serialization without any wrapper function. The example creates and writes the value
22 serialization::archive 11 0 0 3 0 1 2 to the string. Using the wrapper function boost::serial
ization::make_array(), the value written can be shortened to the following string: 22 serialization::
archive 11 0 1 2.
Example 64.15 Serializing an array with the wrapper function make_array()

#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/serialization/array.hpp>
#include <array>
#include <iostream>
#include <sstream>

using namespace boost::archive;

std::stringstream ss;

void save()
{

text_oarchive oa{ss};
std::array<int, 3> a{{0, 1, 2}};
oa << boost::serialization::make_array(a.data(), a.size());

}

void load()
{

text_iarchive ia{ss};
std::array<int, 3> a;
ia >> boost::serialization::make_array(a.data(), a.size());
std::cout << a[0] << ", " << a[1] << ", " << a[2] << '\n';

}

int main()
{

320

CHAPTER 64. BOOST.SERIALIZATION 64.4. WRAPPER FUNCTIONS FOR OPTIMIZATION

save();
load();

}

boost::serialization::make_array() expects the address and the length of an array. However, because it
is known in advance, the length does not need to be serialized as part of the array.
boost::serialization::make_array() can be used whenever classes such as std::array or std::vec
tor contain an array that can be serialized directly. Additional member variables, which would normally also be
serialized, are skipped (see Example 64.15).
Boost.Serialization also provides the wrapper boost::serialization::make_binary_object(). Similar
to boost::serialization::make_array(), this function expects an address and a length. boost::seri
alization::make_binary_object() is used solely for binary data that has no underlying structure, while
boost::serialization::make_array() is used for arrays.

321

Chapter 65

Boost.Uuid

Boost.Uuid provides generators for UUIDs. UUIDs are universally unique identifiers that don’t depend on a cen-
tral coordinating instance. There is, for example, no database storing all generated UUIDs that can be checked to
see whether a new UUID has been used.
UUIDs are used by distributed systems that have to uniquely identify components. For example, Microsoft uses
UUIDs to identify interfaces in the COM world. For new interfaces developed for COM, unique identifiers can
be easily assigned.
UUIDs are 128-bit numbers. Various methods exist to generate UUIDs. For example, a computer’s network ad-
dress can be used to generate a UUID. The generators provided by Boost.Uuid are based on a random number
generator to avoid generating UUIDs that can be traced back to the computer generating them.
All classes and functions from Boost.Uuid are defined in the namespace boost::uuids. There is no master
header file to get access to all of them.
Example 65.1 generates a random UUID. It uses the class boost::uuids::random_generator, which is de-
fined in boost/uuid/uuid_generators.hpp. This header file provides access to all generators provided
by Boost.Uuid.
boost::uuids::random_generator is used like the generators from the C++11 standard library or from
Boost.Random. This class overloads operator() to generate random UUIDs.
The type of a UUID is boost::uuids::uuid. boost::uuids::uuid is a POD – plain old data. You can’t
create objects of type boost::uuids::uuid without a generator. But then, it’s a lean type that allocates exactly
128 bits. The class is defined in boost/uuid/uuid.hpp.
An object of type boost::uuids::uuid can be written to the standard output stream. However, you must in-
clude boost/uuid/uuid_io.hpp. This header file provides the overloaded operator to write objects of type
boost::uuids::uuid to an output stream.
Example 65.1 Generating random UUIDs with boost::uuids::random_generator

#include <boost/uuid/uuid.hpp>
#include <boost/uuid/uuid_generators.hpp>
#include <boost/uuid/uuid_io.hpp>
#include <iostream>

using namespace boost::uuids;

int main()
{

random_generator gen;
uuid id = gen();
std::cout << id << '\n';

}

Example 65.1 displays output that looks like the following: 0cb6f61f-be68-5afc-8686-c52e3fc7a50d.
Using dashes is the preferred way of displaying UUIDs.
Example 65.2 Member functions of boost::uuids::uuid

#include <boost/uuid/uuid.hpp>
#include <boost/uuid/uuid_generators.hpp>
#include <iostream>

322

http://www.boost.org/libs/uuid

CHAPTER 65. BOOST.UUID

using namespace boost::uuids;

int main()
{

random_generator gen;
uuid id = gen();
std::cout << id.size() << '\n';
std::cout << std::boolalpha << id.is_nil() << '\n';
std::cout << id.variant() << '\n';
std::cout << id.version() << '\n';

}

boost::uuids::uuid provides only a few member functions, some of which are introduced in Example 65.2.
size() returns the size of a UUID in bytes. Because a UUID is always 128 bits, size() always returns 16. is_
nil() returns true if the UUID is a nil UUID. The nil UUID is 00000000-0000-0000-0000-000000000000.
variant() and version() specify the kind of UUID and how it was generated. In Example 65.2, variant()
returns 1, which means the UUID conforms to RFC 4122. version() returns 4, which means that the UUID
was created by a random number generator.
boost::uuids::uuid also provides member functions like begin(), end(), and swap() .
Example 65.3 Generators from Boost.Uuid

#include <boost/uuid/uuid.hpp>
#include <boost/uuid/uuid_generators.hpp>
#include <boost/uuid/uuid_io.hpp>
#include <iostream>

using namespace boost::uuids;

int main()
{

nil_generator nil_gen;
uuid id = nil_gen();
std::cout << std::boolalpha << id.is_nil() << '\n';

string_generator string_gen;
id = string_gen("CF77C981-F61B-7817-10FF-D916FCC3EAA4");
std::cout << id.variant() << '\n';

name_generator name_gen(id);
std::cout << name_gen("theboostcpplibraries.com") << '\n';

}

Example 65.3 contains more generators from Boost.Uuid. nil_generator generates a nil UUID. is_nil()
returns true only if the UUID is nil.
You use string_generator if you want to use an existing UUID. You can generate UUIDs at sites such as
http://www.uuidgenerator.net/. For the UUID in Example 65.3, variant() returns 0, which means
that the UUID conforms to the backwards compatible NCS standard. name_generator is used to generate
UUIDs in namespaces.
Please note the spelling of UUIDs when using string_generator. You can pass a UUID without dashes, but if
you use dashes, they must be in the right places. Case (upper or lower) is ignored.
Example 65.4 Conversion to strings

#include <boost/uuid/uuid.hpp>
#include <boost/uuid/uuid_generators.hpp>
#include <boost/uuid/uuid_io.hpp>
#include <boost/lexical_cast.hpp>
#include <string>
#include <iostream>

using namespace boost::uuids;

int main()
{

323

http://www.uuidgenerator.net/

CHAPTER 65. BOOST.UUID

random_generator gen;
uuid id = gen();

std::string s = to_string(id);
std::cout << s << '\n';

std::cout << boost::lexical_cast<std::string>(id) << '\n';
}

Boost.Uuid provides the functions boost::uuids::to_string() and boost::uuids::to_wstring() to
convert a UUID to a string (see Example 65.4). It is also possible to use boost::lexical_cast() for the con-
version.

324

Part XVI

Design Patterns

325

The following libraries are for design patterns.

• Boost.Flyweight helps in situations where many identical objects are used in a program and memory con-
sumption needs to be reduced.

• Boost.Signals2 makes it easy to use the observer design pattern. This library is called Boost.Signals2 be-
cause it implements the signal/slot concept.

• Boost.MetaStateMachine makes it possible to transfer state machines from UML to C++.

326

Chapter 66

Boost.Flyweight

Boost.Flyweight is a library that makes it easy to use the design pattern of the same name. Flyweight helps save
memory when many objects share data. With this design pattern, instead of storing the same data multiple times
in objects, shared data is kept in just one place, and all objects refer to that data. While you can implement this
design pattern with, for example, pointers, it is easier to use Boost.Flyweight.
Example 66.1 A hundred thousand identical strings without Boost.Flyweight

#include <string>
#include <vector>

struct person
{

int id_;
std::string city_;

};

int main()
{

std::vector<person> persons;
for (int i = 0; i < 100000; ++i)

persons.push_back({i, "Berlin"});
}

Example 66.1 creates a hundred thousand objects of type person. person defines two member variables: id_
identifies persons, and city_ stores the city people live in. In this example, all people live in Berlin. That’s why
city_ is set to “Berlin” in all hundred thousand objects. Thus, the example uses a hundred thousand strings all
set to the same value. With Boost.Flyweight, one string – instead of thousands – can be used and memory con-
sumption reduced.
Example 66.2 One string instead of a hundred thousand strings with Boost.Flyweight

#include <boost/flyweight.hpp>
#include <string>
#include <vector>
#include <utility>

using namespace boost::flyweights;

struct person
{

int id_;
flyweight<std::string> city_;
person(int id, std::string city) : id_{id}, city_{std::move(city)} {}

};

int main()
{

std::vector<person> persons;
for (int i = 0; i < 100000; ++i)

327

http://www.boost.org/libs/flyweight

CHAPTER 66. BOOST.FLYWEIGHT

persons.push_back({i, "Berlin"});
}

To use Boost.Flyweight, include boost/flyweight.hpp, as in Example 66.2. Boost.Flyweight provides
additional header files that only need to be included if you need to change the detailed library settings.
Example 66.3 Using boost::flyweights::flyweight multiple times

#include <boost/flyweight.hpp>
#include <string>
#include <vector>
#include <utility>

using namespace boost::flyweights;

struct person
{

int id_;
flyweight<std::string> city_;
flyweight<std::string> country_;
person(int id, std::string city, std::string country)

: id_{id}, city_{std::move(city)}, country_{std::move(country)} {}
};

int main()
{

std::vector<person> persons;
for (int i = 0; i < 100000; ++i)

persons.push_back({i, "Berlin", "Germany"});
}

All classes and functions are in the namespace boost::flyweights. Example 66.2 only uses the class boost:
:flyweights::flyweight, which is the most important class in this library. The member variable city_ uses
the type flyweight<std::string> rather than std::string. This is all you need to change to use this design pat-
tern and reduce the memory requirements of the program.
Example 66.3 adds a second member variable, country_, to the class person. This member variable contains
the names of the countries people live in. Since, in this example, all people live in Berlin, they all live in the
same country. That’s why boost::flyweights::flyweight is used in the definition of the member variable
country_, too.
Boost.Flyweight uses an internal container to store objects. It makes sure there can’t be multiple objects with
same values. By default, Boost.Flyweight uses a hash container such as std::unordered_set. For different
types, different hash containers are used. As in Example 66.3, both member variables city_ and country_ are
strings; therefore, only one container is used. In this example, this is not a problem because the container only
stores two strings: “Berlin” and “Germany.” If many different cities and countries must be stored, it would be
better to store cities in one container and countries in another.
Example 66.4 Using boost::flyweights::flyweight multiple times with tags

#include <boost/flyweight.hpp>
#include <string>
#include <vector>
#include <utility>

using namespace boost::flyweights;

struct city {};
struct country {};

struct person
{

int id_;
flyweight<std::string, tag<city>> city_;
flyweight<std::string, tag<country>> country_;
person(int id, std::string city, std::string country)

: id_{id}, city_{std::move(city)}, country_{std::move(country)} {}

328

CHAPTER 66. BOOST.FLYWEIGHT

};

int main()
{

std::vector<person> persons;
for (int i = 0; i < 100000; ++i)

persons.push_back({i, "Berlin", "Germany"});
}

Example 66.4 passes a second template parameter to boost::flyweights::flyweight. This is a tag. Tags
are arbitrary types only used to differentiate the types on which city_ and country_ are based. Example 66.4
defines two empty structures city and country, which are used as tags. However, the example could have in-
stead used int, bool, or any type.
The tags make city_ and country_ use different types. Now two hash containers are used by Boost.Flyweight
– one stores cities, the other stores countries.
Example 66.5 Template parameters of boost::flyweights::flyweight

#include <boost/flyweight.hpp>
#include <boost/flyweight/set_factory.hpp>
#include <boost/flyweight/no_locking.hpp>
#include <boost/flyweight/no_tracking.hpp>
#include <string>
#include <vector>
#include <utility>

using namespace boost::flyweights;

struct person
{

int id_;
flyweight<std::string, set_factory<>, no_locking, no_tracking> city_;
person(int id, std::string city) : id_{id}, city_{std::move(city)} {}

};

int main()
{

std::vector<person> persons;
for (int i = 0; i < 100000; ++i)

persons.push_back({i, "Berlin"});
}

Template parameters other than tags can be passed to boost::flyweights::flyweight. Example 66.5 passes
boost::flyweights::set_factory, boost::flyweights::no_locking, and boost::flyweights::
no_tracking. Additional header files are included to make use of these classes.
boost::flyweights::set_factory tells Boost.Flyweight to use a sorted container, such as std::set,
rather than a hash container. With boost::flyweights::no_locking, support for multithreading, which
is normally activated by default, is deactivated. boost::flyweights::no_tracking tells Boost.Flyweight
to not track objects stored in internal containers. By default, when objects are no longer used, Boost.Flyweight
detects this and removes them from the containers. When boost::flyweights::no_tracking is set, the de-
tection mechanism is disabled. This improves performance. However, containers can only grow and will never
shrink.
Boost.Flyweight supports additional settings. Check the official documentation if you are interested in more de-
tails on tuning.

329

Chapter 67

Boost.Signals2

Boost.Signals2 implements the signal/slot concept. One or multiple functions – called slots – are linked with an
object that can emit a signal. Every time the signal is emitted, the linked functions are called.
The signal/slot concept can be useful when, for example, developing applications with graphical user interfaces.
Buttons can be modelled so they emit a signal when a user clicks on them. They can support links to many func-
tions to handle user input. That way it is possible to process events flexibly.
std::function can also be used for event handling. One crucial difference between std::function and
Boost.Signals2, is that Boost.Signals2 can associate more than one event handler with a single event. Therefore,
Boost.Signals2 is better for supporting event-driven development and should be the first choice whenever events
need to be handled.
Boost.Signals2 succeeds the library Boost.Signals, which is deprecated and not discussed in this book.

67.1 Signals
Boost.Signals2 offers the class boost::signals2::signal, which can be used to create a signal. This class is
defined in boost/signals2/signal.hpp. Alternatively, you can use the header file boost/signals2.
hpp, which is a master header file that defines all of the classes and functions available in Boost.Signals2.
Boost.Signals2 defines boost::signals2::signal and other classes, as well as all functions in the names-
pace boost::signals2.
Example 67.1 “Hello, world!” with boost::signals2::signal

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

int main()
{

signal<void()> s;
s.connect([]{ std::cout << "Hello, world!\n"; });
s();

}

boost::signals2::signal is a class template that expects as a template parameter the signature of the func-
tion that will be used as an event handler. In Example 67.1, only functions with a signature of void() can be asso-
ciated with the signal s.
A lambda function is associated with the signal s through connect(). Because the lambda function conforms to
the required signature, void(), the association is successfully established. The lambda function is called whenever
the signal s is triggered.
The signal is triggered by calling s like a regular function. The signature of this function matches the one passed
as the template parameter. The brackets are empty because void() does not expect any parameters. Calling s re-
sults in a trigger that, in turn, executes the lambda function that was previously associated with connect().
Example 67.1 can also be implemented with std::function, as shown in Example 67.2.

330

http://www.boost.org/libs/signals2

CHAPTER 67. BOOST.SIGNALS2 67.1. SIGNALS

Example 67.2 “Hello, world!” with std::function

#include <functional>
#include <iostream>

int main()
{

std::function<void()> f;
f = []{ std::cout << "Hello, world!\n"; };
f();

}

In Example 67.2, the lambda function is also executed when f is called. While std::function can only be
used in a scenario like Example 67.2, Boost.Signals2 provides far more variety. For example, it can associate
multiple functions with a particular signal (see Example 67.3).
Example 67.3 Multiple event handlers with boost::signals2::signal

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

int main()
{

signal<void()> s;
s.connect([]{ std::cout << "Hello"; });
s.connect([]{ std::cout << ", world!\n"; });
s();

}

boost::signals2::signal allows you to assign multiple functions to a particular signal by calling conn
ect() repeatedly. Whenever the signal is triggered, the functions are executed in the order in which they were
associated with connect().
The order can also be explicitly defined with the help of an overloaded version of connect(), which expects a
value of type int as an additional parameter (Example 67.4).
Like the previous example, Example 67.4 displays Hello, world!.
Example 67.4 Event handlers with an explicit order

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

int main()
{

signal<void()> s;
s.connect(1, []{ std::cout << ", world!\n"; });
s.connect(0, []{ std::cout << "Hello"; });
s();

}

To release an associated function from a signal, call disconnect(). Example 67.5 only prints Hello because
the association with world() was released before the signal was triggered.
Example 67.5 Disconnecting event handlers from boost::signals2::signal

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

void hello() { std::cout << "Hello"; }
void world() { std::cout << ", world!\n"; }

331

CHAPTER 67. BOOST.SIGNALS2 67.1. SIGNALS

int main()
{

signal<void()> s;
s.connect(hello);
s.connect(world);
s.disconnect(world);
s();

}

Besides connect() and disconnect(), boost::signals2::signal provides a few more member functions
(see Example 67.6). num_slots() returns the number of associated functions. If no function is associated, num_
slots() returns 0. empty() tells you whether event handlers are connected or not. And disconnect_all_sl
ots() does exactly what its name says: it releases all existing associations.
Example 67.6 Additional member functions of boost::signals2::signal

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

int main()
{

signal<void()> s;
s.connect([]{ std::cout << "Hello"; });
s.connect([]{ std::cout << ", world!"; });
std::cout << s.num_slots() << '\n';
if (!s.empty())

s();
s.disconnect_all_slots();

}

In Example 67.7 two lambda functions are associated with the signal s. The first lambda function returns 1, the
second returns 2.
Example 67.7 writes 2 to standard output. Both return values were correctly accepted by s, but all except the last
one were ignored. By default, only the last return value of all associated functions is returned.
Example 67.7 Processing return values from event handlers

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

int main()
{

signal<int()> s;
s.connect([]{ return 1; });
s.connect([]{ return 2; });
std::cout << *s() << '\n';

}

Please note that s() does not directly return the result of the last function called. An object of type boost::
optional is returned, which when de-referenced returns the number 2. Triggering a signal that is not associated
with any function does not yield any return value. Thus, in this case, boost::optional allows Boost.Signals2
to return an empty object. boost::optional is introduced in Chapter 21.
It is possible to customize a signal so that the individual return values are processed accordingly. To do this, a
combiner must be passed to boost::signals2::signal as a second template parameter.
A combiner is a class with an overloaded operator(). This operator is automatically called with two iterators,
which are used to access the functions associated with the particular signal. When the iterators are de-referenced,
the functions are called and their return values become available in the combiner. A common algorithm from the
standard library, such as std::min_element(), can then be used to calculate and return the smallest value (see
Example 67.8).

332

CHAPTER 67. BOOST.SIGNALS2 67.1. SIGNALS

boost::signals2::signal uses boost::signals2::optional_last_value as the default combiner.
This combiner returns objects of type boost::optional. A user can define a combiner with a return value of
any type. For instance, the combiner min_element in Example 67.8 returns the type passed as a template pa-
rameter to min_element.
It is not possible to pass an algorithm such as std::min_element() as a template parameter directly to boost:
:signals2::signal. boost::signals2::signal expects that the combiner defines a type called result_type,
which denotes the type of the value returned by operator(). Since this type is not defined by standard algo-
rithms, the compiler will report an error.
Example 67.8 Finding the smallest return value with a user-defined combiner
#include <boost/signals2.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

using namespace boost::signals2;

template <typename T>
struct min_element
{

typedef T result_type;

template <typename InputIterator>
T operator()(InputIterator first, InputIterator last) const
{

std::vector<T> v(first, last);
return *std::min_element(v.begin(), v.end());

}
};

int main()
{

signal<int(), min_element<int>> s;
s.connect([]{ return 1; });
s.connect([]{ return 2; });
std::cout << s() << '\n';

}

Please note that it is not possible to pass the iterators first and last directly to std::min_element() be-
cause this algorithm expects forward iterators, while combiners work with input iterators. That’s why a vector is
used to store all return values before determining the smallest value with std::min_element().
Example 67.9 modifies the combiner to store all return values in a container, rather than evaluating them. It
stores all the return values in a vector that is then returned by s().
Example 67.9 Receiving all return values with a user-defined combiner
#include <boost/signals2.hpp>
#include <vector>
#include <algorithm>
#include <iostream>

using namespace boost::signals2;

template <typename T>
struct min_element
{

typedef T result_type;

template <typename InputIterator>
T operator()(InputIterator first, InputIterator last) const
{

return T(first, last);
}

};

333

CHAPTER 67. BOOST.SIGNALS2 67.2. CONNECTIONS

int main()
{

signal<int(), min_element<std::vector<int>>> s;
s.connect([]{ return 1; });
s.connect([]{ return 2; });
std::vector<int> v = s();
std::cout << *std::min_element(v.begin(), v.end()) << '\n';

}

67.2 Connections
Functions can be managed with the aid of the connect() and disconnect() member functions provided by
boost::signals2::signal. Because connect() returns an object of type boost::signals2::connect
ion, associations can also be managed differently (see Example 67.10).
Example 67.10 Managing connections with boost::signals2::connection

#include <boost/signals2.hpp>
#include <iostream>

int main()
{

boost::signals2::signal<void()> s;
boost::signals2::connection c = s.connect(

[]{ std::cout << "Hello, world!\n"; });
s();
c.disconnect();

}

The disconnect() member function of boost::signals2::signal requires a function pointer to be passed
in. Avoid this by calling disconnect() on the boost::signals2::connection object.
To block a function for a short time without removing the association from the signal, boost::signals2::
shared_connection_block can be used.
Example 67.11 Blocking connections with shared_connection_block

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

int main()
{

signal<void()> s;
connection c = s.connect([]{ std::cout << "Hello, world!\n"; });
s();
shared_connection_block b{c};
s();
b.unblock();
s();

}

Example 67.11 executes the lambda function twice. The signal s is triggered three times, but the lambda function
is not called the second time because an object of type boost::signals2::shared_connection_block was
created to block the call. Once the object goes out of scope, the block is automatically removed. A block can
also be removed explicitly by calling unblock(). Because it is called before the last trigger, the final call to the
lambda function is executed again.
Example 67.12 Blocking a connection multiple times

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

334

CHAPTER 67. BOOST.SIGNALS2 67.2. CONNECTIONS

int main()
{

signal<void()> s;
connection c = s.connect([]{ std::cout << "Hello, world!\n"; });
shared_connection_block b1{c, false};
{

shared_connection_block b2{c};
std::cout << std::boolalpha << b1.blocking() << '\n';
s();

}
s();

}

In addition to unblock(), boost::signals2::shared_connection_block provides the member functions
block() and blocking(). The former is used to block a connection after a call to unblock(), while the latter
makes it possible to check whether or not a connection is currently blocked.
Please note that boost::signals2::shared_connection_block carries the word “shared” for a reason:
multiple objects of type boost::signals2::shared_connection_block can be initialized with the same
connection.
Example 67.12 accesses s twice, but the lambda function is only called the second time. The program writes Hel
lo, world! to the standard output stream only once.
Because false is passed to the constructor as the second parameter, the first object of type boost::signals2:
:shared_connection_block does not block the connection to the signal s. Hence, calling blocking() on
the object b1 returns false.
Nevertheless, the lambda function is not executed when s is first accessed because the access happens only after
a second object of type boost::signals2::shared_connection_block has been instantiated. By not pass-
ing a second parameter to the constructor, the connection is blocked by the object. When s is accessed for the
second time, the lambda function is executed because the block was automatically removed once b2 went out of
scope.
Example 67.13 Member functions as event handlers

#include <boost/signals2.hpp>
#include <memory>
#include <functional>
#include <iostream>

using namespace boost::signals2;

struct world
{

void hello() const
{

std::cout << "Hello, world!\n";
}

};

int main()
{

signal<void()> s;
{

std::unique_ptr<world> w(new world());
s.connect(std::bind(&world::hello, w.get()));

}
std::cout << s.num_slots() << '\n';
s();

}

Boost.Signals2 can release a connection once the object whose member function is associated with a signal is
destroyed.
Example 67.13 associates the member function of an object with a signal, with the help of std::bind(). The
object is destroyed before the signal is triggered, which is a problem because, instead of passing an object of type

335

CHAPTER 67. BOOST.SIGNALS2 67.2. CONNECTIONS

world, only an address was passed to std::bind(). By the time s() is called, the object referenced no longer
exists.
It is possible to modify the program so that the connection is automatically released once the object is destroyed.
Example 67.14 does this.
Example 67.14 Releasing associated member functions automatically
#include <boost/signals2.hpp>
#include <boost/shared_ptr.hpp>
#include <iostream>

using namespace boost::signals2;

struct world
{

void hello() const
{

std::cout << "Hello, world!\n";
}

};

int main()
{

signal<void()> s;
{

boost::shared_ptr<world> w(new world());
s.connect(signal<void()>::slot_type(&world::hello, w.get()).track(w));

}
std::cout << s.num_slots() << '\n';
s();

}

Now num_slots() returns 0. Example 67.14 does not try to call a member function on an object that doesn’t
exist when the signal is triggered. The change was to tie the object of type world to a smart pointer of type boost:
:shared_ptr, which is passed to track(). This member function is called on the slot that was passed to conn
ect() to request tracking on the corresponding object.
A function or member function associated with a signal is called a slot. The type to specify a slot was not used in
the previous examples because passing a pointer to a function or member function to connect() was sufficient.
The corresponding slot was created and associated with the signal automatically.
In Example 67.14, however, the smart pointer is associated with the slot by calling track(). Because the type
of the slot depends on the signal, boost::signals2::signal provides a type slot_type to access the required
type. slot_type behaves just like std::bind, making it possible to pass both parameters to describe the slot di-
rectly. track() can then be called to associate the slot with a smart pointer of type boost::shared_ptr. The
object is then tracked, which causes the slot to be automatically removed once the tracked object is destroyed.
To manage objects with different smart pointers, slots provide a member function called track_foreign().
While track() expects a smart pointer of type boost::shared_ptr, track_foreign() allows you to, for
example, use a smart pointer of type std::shared_ptr. Smart pointers other than std::shared_ptr and
std::weak_ptr must be introduced to Boost.Signals2 before they can be passed to track_foreign().
The consumer of a particular event can access an object of type boost::signals2::signal to create new
associations or release existing ones.
Example 67.15 Creating new connections in an event handler
#include <boost/signals2.hpp>
#include <iostream>

boost::signals2::signal<void()> s;

void connect()
{

s.connect([]{ std::cout << "Hello, world!\n"; });
}

int main()
{

336

CHAPTER 67. BOOST.SIGNALS2 67.3. MULTITHREADING

s.connect(connect);
s();

}

Example 67.15 accesses s inside the connect() function to associate a lambda function with the signal. Since
connect() is called when the signal is triggered, the question is whether the lambda function will also be called.
The program does not output anything, which means the lambda function is never called. While Boost.Signals2
supports associating functions to signals when a signal is triggered, the new associations will only be used when
the signal is triggered again.
Example 67.16 Releasing connections in an event handler

#include <boost/signals2.hpp>
#include <iostream>

boost::signals2::signal<void()> s;

void hello()
{

std::cout << "Hello, world!\n";
}

void disconnect()
{

s.disconnect(hello);
}

int main()
{

s.connect(disconnect);
s.connect(hello);
s();

}

Example 67.16 does not create a new association, instead it releases an existing one. As in Example 67.15, this
example writes nothing to the standard output stream.
This behavior can be explained quite simply. Imagine that a temporary copy of all slots is created whenever a
signal is triggered. Newly created associations are not added to the temporary copy and therefore can only be
called the next time the signal is triggered. Released associations, on the other hand, are still part of the tempo-
rary copy, but will be checked by the combiner when de-referenced to avoid calling a member function on an
object that has already been destroyed.

67.3 Multithreading
Almost all classes provided by Boost.Signals2 are thread safe and can be used in multithreaded applications.
For example, objects of type boost::signals2::signal and boost::signals2::connection can be ac-
cessed from different threads.
On the other hand, boost::signals2::shared_connection_block is not thread safe. This limitation is not
important because multiple objects of type boost::signals2::shared_connection_block can be created
in different threads and can use the same connection object.
Example 67.17 boost::signals2::signal is thread safe

#include <boost/signals2.hpp>
#include <thread>
#include <mutex>
#include <iostream>

boost::signals2::signal<void(int)> s;
std::mutex m;

void loop()
{

337

CHAPTER 67. BOOST.SIGNALS2 67.3. MULTITHREADING

for (int i = 0; i < 100; ++i)
s(i);

}

int main()
{

s.connect([](int i){
std::lock_guard<std::mutex> lock{m};
std::cout << i << '\n';

});
std::thread t1{loop};
std::thread t2{loop};
t1.join();
t2.join();

}

Example 67.17 creates two threads that execute the loop() function, which accesses s one hundred times to call
the associated lambda function. Boost.Signals2 explicitly supports simultaneous access from different threads to
objects of type boost::signals2::signal.
Example 67.17 displays numbers from 0 to 99. Because i is incremented in two threads and written to the stan-
dard output stream in the lambda function, the numbers will not only be displayed twice, they will also overlap.
However, because boost::signals2::signal can be accessed from different threads, the program will not
crash.
However, Example 67.17 still requires synchronization. Because two threads access s, the associated lambda
function runs in parallel in two threads. To avoid having the two threads interrupt each other while writing to
standard output, a mutex is used to synchronize access to std::cout.
For single-threaded applications, support for multithreading can be disabled in Boost.Signals2.
Example 67.18 boost::signals2::signal without thread safety

#include <boost/signals2.hpp>
#include <iostream>

using namespace boost::signals2;

signal<void()> s;

int main()
{

typedef keywords::mutex_type<dummy_mutex> dummy_mutex;
signal_type<void(), dummy_mutex>::type s;
s.connect([]{ std::cout << "Hello, world!\n"; });
s();

}

Out of the many template parameters supported by boost::signals2::signal, the last one defines the type
of mutex used for synchronization. Fortunately, Boost.Signals2 offers a simpler way to disable synchronization
than passing the complete list of parameters.
The boost::signals2::keywords namespace contains classes that make it possible to pass template parame-
ters by name. boost::signals2::keywords::mutex_type can be used to pass the mutex type as the second
template parameter to boost::signals2::signal_type. Please note that boost::signals2::signal_t
ype, not boost::signals2::signal, must be used in this case. The type equivalent to boost::signals2::
signal, which is required to define the signal s, is retrieved via boost::signals2::signal_type::type.
Boost.Signals2 provides an empty mutex implementation called boost::signals2::dummy_mutex. If a sig-
nal is defined with this class, it will no longer support multithreading (see Example 67.18).

338

Chapter 68

Boost.MetaStateMachine

Boost.MetaStateMachine is used to define state machines. State machines describe objects through their states.
They describe what states exist and what transitions between states are possible.
Boost.MetaStateMachine provides three different ways to define state machines. The code you need to write to
create a state machine depends on the front-end.
If you go with the basic front-end or the function front-end, you define state machines in the conventional way:
you create classes, derive them from other classes provided by Boost.MetaStateMachine, define required member
variables, and write the required C++ code yourself. The fundamental difference between the basic front-end and
the function front-end is that the basic front-end expects function pointers, while the function front-end lets you
use function objects.
The third front-end is called eUML and is based on a domain-specific language. This front-end makes it possible
to define state machines by reusing definitions of a UML state machine. Developers familiar with UML can copy
definitions from a UML behavior diagram to C++ code. You don’t need to translate UML definitions to C++
code.
eUML is based on a set of macros that you must use with this front-end. The advantage of the macros is that
you don’t need to work directly with many of the classes provided by Boost.MetaStateMachine. You just need
to know which macros to use. This means you can’t forget to derive your state machine from a class, which can
happen with the basic front-end or the function front-end. This chapter introduces Boost.MetaStateMachine with
eUML.
Example 68.1 uses the simplest state machine possible: A lamp has exactly two states. It is either on or off. If it
is off, it can be switched on. If it is on, it can be switched off. It is possible to switch from every state to every
other state.
Example 68.1 Simple state machine with eUML

#include <boost/msm/front/euml/euml.hpp>
#include <boost/msm/front/euml/state_grammar.hpp>
#include <boost/msm/back/state_machine.hpp>
#include <iostream>

namespace msm = boost::msm;
using namespace boost::msm::front::euml;

BOOST_MSM_EUML_STATE((), Off)
BOOST_MSM_EUML_STATE((), On)

BOOST_MSM_EUML_EVENT(press)

BOOST_MSM_EUML_TRANSITION_TABLE((
Off + press == On,
On + press == Off

), light_transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(
(light_transition_table, init_ << Off),
light_state_machine)

int main()

339

http://www.boost.org/libs/msm

CHAPTER 68. BOOST.METASTATEMACHINE

{
msm::back::state_machine<light_state_machine> light;
std::cout << *light.current_state() << '\n';
light.process_event(press);
std::cout << *light.current_state() << '\n';
light.process_event(press);
std::cout << *light.current_state() << '\n';

}

Example 68.1 uses the eUML front-end to describe the state machine of a lamp. Boost.MetaStateMachine doesn’t
have a master header file. Therefore, the required header files have to be included one by one. boost/msm/
front/euml/euml.hpp and boost/msm/front/euml/state_grammar.hpp provide access to
eUML macros. boost/msm/back/state_machine.hpp is required to link a state machine from the
front-end to a state-machine from the back-end. While front-ends provide various possibilities to define state
machines, the actual implementation of a state machine is found in the back-end. Since Boost.MetaStateMachine
contains only one back-end, you don’t need to select an implementation.
All of the definitions from Boost.MetaStateMachine are in the namespace boost::msm. Unfortunately, many
eUML macros don’t refer explicitly to classes in this namespace. They use either the namespace msm or no names-
pace at all. That’s why Example 68.1 creates an alias for the namespace boost::msm and makes the definitions
in boost::msm::front::euml available with a using directive. Otherwise the eUML macros lead to com-
piler errors.
To use the state machine of a lamp, first define the states for off and on. States are defined with the macro BOOS
T_MSM_EUML_STATE, which expects the name of the state as its second parameter. The first parameter describes
the state. You’ll see later how these descriptions look like. The two states defined in Example 68.1 are called Off
and On.
To switch between states, events are required. Events are defined with the macro BOOST_MSM_EUML_EVENT,
which expects the name of the event as its sole parameter. Example 68.1 defines an event called press, which
represents the action of pressing the light switch. Since the same event switches a light on and off, only one event
is defined.
When the required states and events are defined, the macro BOOST_MSM_EUML_TRANSITION_TABLE is used to
create a transition table. This tables defines valid transitions between states and which events trigger which state
transitions.
BOOST_MSM_EUML_TRANSITION_TABLE expects two parameters. The first parameter defines the transition ta-
ble, and the second is the name of the transition table. The syntax of the first parameter is designed to make it
easy to recognize how states and events relate to each other. For example, Off + press ==On means that the
machine in the state Off switches to the state On with the event press. The intuitive and self-explanatory syntax
of a transition table definition is one of the strengths of the eUML front-end.
After the transition table has been created, the state machine is defined with the macro BOOST_MSM_EUML_DECL
ARE_STATE_MACHINE. The second parameter is again the simpler one: it sets the name of the state machine. The
state machine in Example 68.1 is named light_state_machine.
The first parameter of BOOST_MSM_EUML_DECLARE_STATE_MACHINE is a tuple. The first value is the name of
the transition table. The second value is an expression using init_, which is an attribute provided by Boost.MetaStateMachine.
You’ll learn more about attributes later. The expression init_ << Off is required to set the initial state of the
state machine to Off.
The state machine light_state_machine, defined with BOOST_MSM_EUML_DECLARE_STATE_MACHINE, is a
class. You use this class to instantiate a state machine from the back-end. In Example 68.1 this is done by pass-
ing light_state_machine to the class template boost::msm::back::state_machine as a parameter.
This creates a state machine called light.
State machines provide a member function process_event() to process events. If you pass an event to proce
ss_event(), the state machines changes its state depending on its transition table.
To make it easier to see what happens in Example 68.1 when process_event() is called multiple times, curre
nt_state() is called. This member function should only be used for debugging purposes. It returns a pointer to
an int. Every state is an int value assigned in the order the states have been accessed in BOOST_MSM_EUML_TRAN
SITION_TABLE. In Example 68.1 Off is assigned the value 0 and On is assigned the value 1. The example writes
0, 1, and 0 to standard output. The light switch is pressed two times, which switches the light on and off.
Example 68.2 State machine with state, event, and action

#include <boost/msm/front/euml/euml.hpp>
#include <boost/msm/front/euml/state_grammar.hpp>
#include <boost/msm/back/state_machine.hpp>

340

CHAPTER 68. BOOST.METASTATEMACHINE

#include <iostream>

namespace msm = boost::msm;
using namespace boost::msm::front::euml;

BOOST_MSM_EUML_STATE((), Off)
BOOST_MSM_EUML_STATE((), On)

BOOST_MSM_EUML_EVENT(press)

BOOST_MSM_EUML_ACTION(switch_light)
{

template <class Event, class Fsm>
void operator()(const Event &ev, Fsm &fsm,

BOOST_MSM_EUML_STATE_NAME(Off) &sourceState,
BOOST_MSM_EUML_STATE_NAME(On) &targetState) const

{
std::cout << "Switching on\n";

}

template <class Event, class Fsm>
void operator()(const Event &ev, Fsm &fsm,

decltype(On) &sourceState,
decltype(Off) &targetState) const

{
std::cout << "Switching off\n";

}
};

BOOST_MSM_EUML_TRANSITION_TABLE((
Off + press / switch_light == On,
On + press / switch_light == Off

), light_transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(
(light_transition_table, init_ << Off),
light_state_machine)

int main()
{

msm::back::state_machine<light_state_machine> light;
light.process_event(press);
light.process_event(press);

}

Example 68.2 extends the state machine for the lamp by an action. An action is executed by an event triggering a
state transition. Because actions are optional, a state machine could be defined without them.
Actions are defined with BOOST_MSM_EUML_ACTION. Strictly speaking, a function object is defined. You must
overload the operator operator(). The operator must accept four parameters. The parameters reference an
event, a state machine and two states. You are free to define a template or use concrete types for all of the pa-
rameters. In Example 68.2, concrete types are only set for the last two parameters. Because these parameters
describe the beginning and ending states, you can overload operator() so that different member functions are
executed for different switches.
Please note that the states On and Off are objects. Boost.MetaStateMachine provides a macro BOOST_MSM_EUM
L_STATE_NAME to get the type of a state. If you use C++11, you can use the operator decltype instead of the
macro.
The action switch_light, which has been defined with BOOST_MSM_EUML_ACTION, is executed when the light
switch is pressed. The transition table has been changed accordingly. The first transition is now Off + press
/switch_light ==On. You pass actions after a slash after the event. This transition means that the operator
operator() of switch_light is called if the current state is Off and the event press happens. After the ac-
tion has been executed, the new state is On.
Example 68.2 writes Switching on and then Switching off to standard output.

341

CHAPTER 68. BOOST.METASTATEMACHINE

Example 68.3 uses a guard in the transition table. The definition of the first transition is Off + press [!is_
broken] /switch_light ==On. Passing is_broken in brackets means that the state machine checks before
the action switch_light is called whether the transition may occur. This is called a guard. A guard must return
a result of type bool.
A guard like is_broken is defined with BOOST_MSM_EUML_ACTION in the same way as actions. Thus, the op-
erator operator() has to be overloaded for the same four parameters. operator() must have a return value of
type bool to be used as a guard.
Please note that you can use logical operators like operator! on guards inside brackets.
If you run the example, you’ll notice that nothing is written to standard output. The action switch_light is not
executed – the light stays off. The guard is_broken returns true. However, because the operator operator!
is used, the expression in brackets evaluates to false.
You can use guards to check whether a state transition can occur. Example 68.3 uses is_broken to check whether
the lamp is broken. While a transition from off to on is usually possible and the transition table describes lamps
correctly, in this example, the lamp cannot be switched on. Despite two calls to process_event(), the state of
light is Off.
Example 68.3 State machine with state, event, guard, and action

#include <boost/msm/front/euml/euml.hpp>
#include <boost/msm/front/euml/state_grammar.hpp>
#include <boost/msm/back/state_machine.hpp>
#include <iostream>

namespace msm = boost::msm;
using namespace boost::msm::front::euml;

BOOST_MSM_EUML_STATE((), Off)
BOOST_MSM_EUML_STATE((), On)

BOOST_MSM_EUML_EVENT(press)

BOOST_MSM_EUML_ACTION(is_broken)
{

template <class Event, class Fsm, class Source, class Target>
bool operator()(const Event &ev, Fsm &fsm, Source &src, Target &trg) const
{

return true;
}

};

BOOST_MSM_EUML_ACTION(switch_light)
{

template <class Event, class Fsm, class Source, class Target>
void operator()(const Event &ev, Fsm &fsm, Source &src, Target &trg) const
{

std::cout << "Switching\n";
}

};

BOOST_MSM_EUML_TRANSITION_TABLE((
Off + press [!is_broken] / switch_light == On,
On + press / switch_light == Off

), light_transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(
(light_transition_table, init_ << Off),
light_state_machine)

int main()
{

msm::back::state_machine<light_state_machine> light;
light.process_event(press);
light.process_event(press);

}

342

CHAPTER 68. BOOST.METASTATEMACHINE

Example 68.4 State machine with state, event, entry action, and exit action
#include <boost/msm/front/euml/euml.hpp>
#include <boost/msm/front/euml/state_grammar.hpp>
#include <boost/msm/back/state_machine.hpp>
#include <iostream>

namespace msm = boost::msm;
using namespace boost::msm::front::euml;

BOOST_MSM_EUML_ACTION(state_entry)
{

template <class Event, class Fsm, class State>
void operator()(const Event &ev, Fsm &fsm, State &state) const
{

std::cout << "Entering\n";
}

};

BOOST_MSM_EUML_ACTION(state_exit)
{

template <class Event, class Fsm, class State>
void operator()(const Event &ev, Fsm &fsm, State &state) const
{

std::cout << "Exiting\n";
}

};

BOOST_MSM_EUML_STATE((state_entry, state_exit), Off)
BOOST_MSM_EUML_STATE((state_entry, state_exit), On)

BOOST_MSM_EUML_EVENT(press)

BOOST_MSM_EUML_TRANSITION_TABLE((
Off + press == On,
On + press == Off

), light_transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(
(light_transition_table, init_ << Off),
light_state_machine)

int main()
{

msm::back::state_machine<light_state_machine> light;
light.process_event(press);
light.process_event(press);

}

In Example 68.4, the first parameter passed to BOOST_MSM_EUML_STATE is a tuple consisting of state_entry
and state_exit. state_entry is an entry action, and state_exit is an exit action. These actions are exe-
cuted when a state is entered or exited.
Like actions, entry and exit actions are defined with BOOST_MSM_EUML_ACTION. However, the overloaded oper-
ator operator() expects only three parameters: references to an event, a state machine, and a state. Transitions
between states don’t matter for entry and exit actions, so only one state needs to be passed to operator(). For
entry actions, this state is entered. For exit actions, this state is exited.
In Example 68.4, both states Off and On have entry and exit actions. Because the event press occurs twice, Ent
ering and Exiting is displayed twice. Please note that Exiting is displayed first and Entering afterwards
because the first action executed is an exit action.
The first event press triggers a transition from Off to On, and Exiting and Entering are each displayed once.
The second event press switches the state to Off. Again Exiting and Entering are each displayed once.
Thus, state transitions execute the exit action first, then the entry action of the new state.

343

CHAPTER 68. BOOST.METASTATEMACHINE

Example 68.5 uses the guard is_broken to check whether a state transition from Off to On is possible. This
time the return value of is_broken depends on how often the light switch has been pressed. It is possible to
switch the light on two times before the lamp is broken. To count how often the light has been switched on, an
attribute is used.
Attributes are variables that can be attached to objects. They let you adapt the behavior of state machines at run
time. Because data such as how often the light has been switched on has to be stored somewhere, it makes sense
to store it directly in the state machine, in a state, or in an event.
Before an attribute can be used, it has to be defined. This is done with the macro BOOST_MSM_EUML_DECLARE_
ATTRIBUTE. The first parameter passed to BOOST_MSM_EUML_DECLARE_ATTRIBUTE is the type, and the second
is the name of the attribute. Example 68.5 defines the attribute switched_on of type int.
After the attribute has been defined, it must be attached to an object. The example attaches the attribute switch
ed_on to the state machine. This is done via the fifth value in the tuple, which is passed as the first parameter to
BOOST_MSM_EUML_DECLARE_STATE_MACHINE. With attributes_, a keyword from Boost.MetaStateMachine
is used to create a lambda function. To attach the attribute switched_on to the state machine, write switched
on to attributes as though it were a stream, using operator<<.
The third and fourth values in the tuples are both set to no_action. The attribute is passed as the fifth value in
the tuple. The third and fourth values can be used to define entry and exit actions for the state machine. If no
entry and exit actions are defined, use no_action.
After the attribute has been attached to the state machine, it can be accessed with get_attribute(). In Ex-
ample 68.5, this member function is called in the entry action state_entry to increment the value of the at-
tribute. Because state_entry is only linked to the state On, switched_on is only incremented when the light
is switched on.
switched_on is also accessed from the guard is_broken, which checks whether the value of the attribute is
greater than 1. If it is, the guard returns true. Because attributes are initialized with the default constructor and
switched_on is set to 0, is_broken returns true if the light has been switched on two times.
Example 68.5 Attributes in a state machine

#include <boost/msm/front/euml/euml.hpp>
#include <boost/msm/front/euml/state_grammar.hpp>
#include <boost/msm/back/state_machine.hpp>
#include <iostream>

namespace msm = boost::msm;
using namespace boost::msm::front::euml;

BOOST_MSM_EUML_DECLARE_ATTRIBUTE(int, switched_on)

BOOST_MSM_EUML_ACTION(state_entry)
{

template <class Event, class Fsm, class State>
void operator()(const Event &ev, Fsm &fsm, State &state) const
{

std::cout << "Switched on\n";
++fsm.get_attribute(switched_on);

}
};
BOOST_MSM_EUML_ACTION(is_broken)
{

template <class Event, class Fsm, class Source, class Target>
bool operator()(const Event &ev, Fsm &fsm, Source &src, Target &trg) const
{

return fsm.get_attribute(switched_on) > 1;
}

};

BOOST_MSM_EUML_STATE((), Off)
BOOST_MSM_EUML_STATE((state_entry), On)
BOOST_MSM_EUML_EVENT(press)

BOOST_MSM_EUML_TRANSITION_TABLE((
Off + press [!is_broken] == On,
On + press == Off

344

CHAPTER 68. BOOST.METASTATEMACHINE

), light_transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(
(light_transition_table, init_ << Off, no_action, no_action,
attributes_ << switched_on), light_state_machine)

int main()
{

msm::back::state_machine<light_state_machine> light;
light.process_event(press);
light.process_event(press);
light.process_event(press);
light.process_event(press);
light.process_event(press);

}

In Example 68.5, the event press occurs five times. The light is switched on and off two times and then switched
on again. The first two times the light is switched on, Switched on is displayed. However, the third time the
light is switched on there is no output. This happens because is_broken returns true after the light has been
switched on two times, and therefore, there is no state transition from Off to On. This means the entry action for
the state On is not executed, and the example does not write to standard output.
Example 68.6 does the same thing as Example 68.5: after switching the light on two times, the light is broken
and can’t be switched on anymore. While the previous example accessed the attribute switched_on in actions,
this example uses attributes in the transition table.
Boost.MetaStateMachine provides the function fsm_() to access an attribute in a state machine. That way a
guard is defined that checks whether switched_on is smaller than 2. And an action is defined that increments
switched_on every time the state switches from Off to On.
Please note that the smaller-than comparison in the guard is done with Int_<2>(). The number 2 must be passed
as a template parameter to Int_ to create an instance of this class. That creates a function object that has the type
needed by Boost.MetaStateMachine.
Example 68.6 also uses the macro BOOST_MSM_EUML_FUNCTION to make a function an action. The first param-
eter passed to BOOST_MSM_EUML_FUNCTION is the name of the action that can be used in the function front-end.
The second parameter is the name of the function. The third parameter is the name of the action as it is used in
eUML. The fourth and fifth parameters are the return values for the function – one for the case where the action
is used for a state transition, and the other for the case where the action describes an entry or exit action. After
write_message() has been turned into an action this way, an object of type write_message_ is created and
used following ++fsm_(switched_on) in the transition table. In a state transition from Off to On, the attribute
switched_on is incremented and then write_message() is called.
Example 68.6 displays Switched on twice, as in Example 68.5.
Boost.MetaStateMachine provides additional functions, such as state_() and event_(), to access attributes
attached to other objects. Other classes, such as Char_ and String_, can also be used like Int_.

Tip

As you can see in the examples, the front-end eUML requires you to use many macros.
The header file boost/msm/front/euml/common.hpp contains definitions for all of the
eUML macros, which makes it a useful reference.

Example 68.6 Accessing attributes in transition tables

#include <boost/msm/front/euml/euml.hpp>
#include <boost/msm/front/euml/state_grammar.hpp>
#include <boost/msm/back/state_machine.hpp>
#include <iostream>

namespace msm = boost::msm;
using namespace boost::msm::front::euml;

BOOST_MSM_EUML_DECLARE_ATTRIBUTE(int, switched_on)

345

CHAPTER 68. BOOST.METASTATEMACHINE

void write_message()
{

std::cout << "Switched on\n";
}

BOOST_MSM_EUML_FUNCTION(WriteMessage_, write_message, write_message_,
void, void)

BOOST_MSM_EUML_STATE((), Off)
BOOST_MSM_EUML_STATE((), On)

BOOST_MSM_EUML_EVENT(press)

BOOST_MSM_EUML_TRANSITION_TABLE((
Off + press [fsm_(switched_on) < Int_<2>()] / (++fsm_(switched_on),

write_message_()) == On,
On + press == Off

), light_transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(
(light_transition_table, init_ << Off, no_action, no_action,
attributes_ << switched_on), light_state_machine)

int main()
{

msm::back::state_machine<light_state_machine> light;
light.process_event(press);
light.process_event(press);
light.process_event(press);
light.process_event(press);
light.process_event(press);

}

346

Part XVII

Other Libraries

347

The following libraries provide small but helpful utilities.

• Boost.Utility collects everything that doesn’t fit somewhere else in the Boost libraries.

• Boost.Assign provides helper functions that make it easier to perform operations such as adding multiple
values to a container without having to call push_back() repeatedly.

• Boost.Swap provides a variant of std::swap() that is optimized for the Boost libraries.

• Boost.Operators makes it easy to define operators based on other operators.

348

Chapter 69

Boost.Utility

The library Boost.Utility is a conglomeration of miscellaneous, useful classes and functions that are too small to
justify being maintained in stand-alone libraries. While the utilities are small and can be learned quickly, they are
completely unrelated. Unlike the examples in other chapters, the code samples here do not build on each other,
since they are independent utilities.
While most utilities are defined in boost/utility.hpp, some have their own header files. The following
examples include the appropriate header file for the utility being introduced.
Example 69.1 passes the function boost::checked_delete() as a parameter to the member function pop
_back_and_dispose(), which is provided by the class boost::intrusive::list from Boost.Intrusive.
boost::intrusive::list and pop_back_and_dispose() are introduced in Chapter 18, while boost::
checked_delete() is provided by Boost.Utility and defined in boost/checked_delete.hpp.
boost::checked_delete() expects as its sole parameter a pointer to the object that will be deleted by del
ete. Because pop_back_and_dispose() expects a function that takes a pointer to destroy the corresponding
object, it makes sense to pass in boost::checked_delete() – that way, you don’t need to define a similar
function.
Unlike delete, boost::checked_delete() ensures that the type of the object to be destroyed is complete.
delete will accept a pointer to an object with an incomplete type. While this concerns a detail of the C++ stan-
dard that you can usually ignore, you should note that boost::checked_delete() is not completely identical
to a call to delete because it puts higher demands on its parameter.
Example 69.1 Using boost::checked_delete()

#include <boost/checked_delete.hpp>
#include <boost/intrusive/list.hpp>
#include <string>
#include <utility>
#include <iostream>

struct animal : public boost::intrusive::list_base_hook<>
{

std::string name_;
int legs_;

animal(std::string name, int legs) : name_{std::move(name)},
legs_{legs} {}

};

int main()
{

animal *a = new animal{"cat", 4};

typedef boost::intrusive::list<animal> animal_list;
animal_list al;

al.push_back(*a);

al.pop_back_and_dispose(boost::checked_delete<animal>);
std::cout << al.size() << '\n';

349

http://www.boost.org/libs/utility

CHAPTER 69. BOOST.UTILITY

}

Boost.Utility also provides boost::checked_array_delete(), which can be used to destroy arrays. It calls
delete[] rather than delete.
Additionally, two classes, boost::checked_deleter and boost::checked_array_deleter, are available
to create function objects that behave like boost::checked_delete() and boost::checked_array_del
ete(), respectively.
Example 69.2 Using BOOST_CURRENT_FUNCTION

#include <boost/current_function.hpp>
#include <iostream>

int main()
{

const char *funcname = BOOST_CURRENT_FUNCTION;
std::cout << funcname << '\n';

}

Example 69.2 uses the macro BOOST_CURRENT_FUNCTION, defined in boost/current_function.hpp,
to return the name of the surrounding function as a string.
BOOST_CURRENT_FUNCTION provides a platform-independent way to retrieve the name of a function. Starting
with C++11, you can do the same thing with the standardized macro __func__. Before C++11, compilers like
Visual C++ and GCC supported the macro __FUNCTION__ as an extension. BOOST_CURRENT_FUNCTION uses
whatever macro is supported by the compiler.
If compiled with Visual C++ 2013, Example 69.2 displays int __cdecl main(void).
Example 69.3 Using boost::prior() and boost::next()

#include <boost/next_prior.hpp>
#include <array>
#include <algorithm>
#include <iostream>

int main()
{

std::array<char, 4> a{{'a', 'c', 'b', 'd'}};

auto it = std::find(a.begin(), a.end(), 'b');
auto prior = boost::prior(it, 2);
auto next = boost::next(it);

std::cout << *prior << '\n';
std::cout << *it << '\n';
std::cout << *next << '\n';

}

Boost.Utility provides two functions, boost::prior() and boost::next(), that return an iterator relative to
another iterator. In Example 69.3, it points to “b” in the array, prior points to “a”, and next to “d”.
Unlike std::advance(), boost::prior() and boost::next() return a new iterator and do not modify the
iterator that was passed in.
In addition to the iterator, both functions accept a second parameter that indicates the number of steps to move
forward or backward. In Example 69.3, the iterator is moved two steps backward in the call to boost::prior()
and one step forward in the call to boost::next().
The number of steps is always a positive number, even for boost::prior(), which moves backwards.
To use boost::prior() and boost::next(), include the header file boost/next_prior.hpp.
Both functions were added to the standard library in C++11, where they are called std::prev() and std::
next(). They are defined in the header file iterator.
Example 69.4 Using boost::noncopyable

#include <boost/noncopyable.hpp>
#include <string>
#include <utility>
#include <iostream>

350

CHAPTER 69. BOOST.UTILITY

struct animal : boost::noncopyable
{

std::string name;
int legs;

animal(std::string n, int l) : name{std::move(n)}, legs{l} {}
};

void print(const animal &a)
{

std::cout << a.name << '\n';
std::cout << a.legs << '\n';

}

int main()
{

animal a{"cat", 4};
print(a);

}

Boost.Utility provides the class boost::noncopyable, which is defined in boost/noncopyable.hpp.
This class makes it impossible to copy (and move) objects.
The same effect can be achieved by defining the copy constructor and assignment operator as private member
functions or – since C++11 – by removing the copy constructor and assignment operator with delete. How-
ever, deriving from boost::noncopyable explicitly states the intention that objects of a class should be non-
copyable.

Note

Some developers prefer boost::noncopyable while others prefer to remove member
functions explicitly with delete. You will find arguments for both approaches at Stack
Overflow, among other places.

Example 69.4 can be compiled and executed. However, if the signature of the print() function is modified to
take an object of type animal by value rather than by reference, the resulting code will no longer compile.
Example 69.5 Using boost::addressof()

#include <boost/utility/addressof.hpp>
#include <string>
#include <iostream>

struct animal
{

std::string name;
int legs;

int operator&() const { return legs; }
};

int main()
{

animal a{"cat", 4};
std::cout << &a << '\n';
std::cout << boost::addressof(a) << '\n';

}

To retrieve the address of a particular object, even if operator& has been overloaded, Boost.Utility provides
the function boost::addressof(), which is defined in boost/utility/addressof.hpp (see Exam-
ple 69.5). With C++11, this function became part of the standard library and is available as std::addressof()

351

http://stackoverflow.com/questions/7823990/what-are-the-advantages-of-boostnoncopyable
http://stackoverflow.com/questions/7823990/what-are-the-advantages-of-boostnoncopyable

CHAPTER 69. BOOST.UTILITY

in the header file memory.
Example 69.6 Using BOOST_BINARY

#include <boost/utility/binary.hpp>
#include <iostream>

int main()
{

int i = BOOST_BINARY(1001 0001);
std::cout << i << '\n';

short s = BOOST_BINARY(1000 0000 0000 0000);
std::cout << s << '\n';

}

The macro BOOST_BINARY lets you create numbers in binary form. Standard C++ only supports hexadecimal
and octal forms, using the prefixes 0x and 0. C++11 introduced user-defined literals, which allows you to define
custom suffixes, but there still is no standard way of using numbers in binary form in C++11.
Example 69.6 displays 145 and -32768. The bit sequence stored in s represents a negative number because the
16-bit type short uses the 16th bit – the most significant bit in short – as the sign bit.
BOOST_BINARY simply offers another option to write numbers. Because, in C++, the default type for numbers is
int, BOOST_BINARY also uses int. To define a number of type long, use the macro BOOST_BINARY_L, which
generates the equivalent of a number suffixed with the letter L.
Boost.Utility includes additional macros such as BOOST_BINARY_U, which initializes a variable without a sign
bit. All of these macros are defined in the header file boost/utility/binary.hpp.
Example 69.7 Using boost::string_ref

#include <boost/utility/string_ref.hpp>
#include <iostream>

boost::string_ref start_at_boost(boost::string_ref s)
{

auto idx = s.find("Boost");
return (idx != boost::string_ref::npos) ? s.substr(idx) : "";

}

int main()
{

boost::string_ref s = "The Boost C++ Libraries";
std::cout << start_at_boost(s) << '\n';

}

Example 69.7 introduces the class boost::string_ref, which is a reference to a string that only supports read
access. To a certain extent, the reference is comparable with const std::string&. However, const std:
:string& requires the existence of an object of type std::string. boost::string_ref can also be used
without std::string. The benefit of boost::string_ref is that, unlike std::string, it requires no mem-
ory to be allocated.
Example 69.7 looks for the word “Boost” in a string. If found, a string starting with that word is displayed. If the
word “Boost” isn’t found, an empty string is displayed. The type of the string s in main() isn’t std::string,
it’s boost::string_ref. Thus no memory is allocated with new and no copy is created. s points to the literal
string “The Boost C++ Libraries” directly.
The type of the return value of start_at_boost() is boost::string_ref, not std::string. The function
doesn’t return a new string, it returns a reference. This reference is to either a substring of the parameter or an
empty string. start_at_boost() requires that the original string remains valid as long as references of type
boost::string_ref are in use. If this is guaranteed, as in Example 69.7, memory allocations can be avoided.
Additional utilities are also available, but they are beyond the scope of this book because they are mostly used
by the developers of Boost libraries or for template meta programming. The documentation of Boost.Utility pro-
vides a fairly comprehensive overview of these additional utilities and can serve as a starting point if you are in-
terested.

352

Chapter 70

Boost.Assign

The library Boost.Assign provides helper functions to initialize containers or add elements to containers. These
functions are especially helpful if many elements need to be stored in a container. Thanks to the functions offered
by Boost.Assign, you don’t need to call a member function like push_back() repeatedly to insert elements one
by one into a container.
If you work with a development environment that supports C++11, you can benefit from initializer lists. Usually
you can pass any number of values to the constructor to initialize containers. Thanks to initializer lists, you don’t
have to depend on Boost.Assign with C++11. However, Boost.Assign provides helper functions to add multiple
values to an existing container. These helper functions can be useful in C++11 development environments.
Example 70.1 introduces a few functions that containers can be initialized with. To use the functions defined by
Boost.Assign, include the header file boost/assign.hpp.
Boost.Assign provides three functions to initialize containers. The most important, and the one you usually work
with, is boost::assign::list_of(). You use boost::assign::map_list_of() with std::map and
boost::assign::tuple_list_of() to initialize tuples in a container.
You don’t have to use boost::assign::map_list_of() or boost::assign::tuple_list_of(). You
can initialize any container with boost::assign::list_of(). However, if you use std::map or a container
with tuples, you must pass a template parameter to boost::assign::list_of() that tells the function how
elements are stored in the container. This template parameter is not required for boost::assign::map_list
_of() and boost::assign::tuple_list_of().
Example 70.1 Initializing containers

#include <boost/assign.hpp>
#include <boost/tuple/tuple.hpp>
#include <vector>
#include <stack>
#include <map>
#include <string>
#include <utility>

using namespace boost::assign;

int main()
{

std::vector<int> v = list_of(1)(2)(3);

std::stack<int> s = list_of(1)(2)(3).to_adapter();

std::vector<std::pair<std::string, int>> v2 =
list_of<std::pair<std::string, int>>("a", 1)("b", 2)("c", 3);

std::map<std::string, int> m =
map_list_of("a", 1)("b", 2)("c", 3);

std::vector<boost::tuple<std::string, int, double>> v3 =
tuple_list_of("a", 1, 9.9)("b", 2, 8.8)("c", 3, 7.7);

}

353

http://www.boost.org/libs/assign

CHAPTER 70. BOOST.ASSIGN

All three functions return a proxy object. This object overloads the operator operator(). You can call this op-
erator multiple times to save values in the container. Even though you access another object, and not the con-
tainer, the container is changed through this proxy object.
If you want to initialize adapters like std::stack, call the member function to_adapter() on the proxy. The
proxy then calls the member function push(), which is provided by all adapters.
boost::assign::tuple_list_of() supports tuples of type boost::tuple only. You cannot use this func-
tion to initialize containers with tuples from the standard library.
Example 70.2 illustrates how values can be added to existing containers.
The boost::assign::push_back(), boost::assign::push_front(), boost::assign::insert(),
and boost::assign::push() functions of Boost.Assign return a proxy. You pass these functions the container
you want to add new elements to. Then, you call the operator operator() on the proxy and pass the values you
want to store in the container.
Example 70.2 Adding values to containers

#include <boost/assign.hpp>
#include <vector>
#include <deque>
#include <set>
#include <queue>

int main()
{

std::vector<int> v;
boost::assign::push_back(v)(1)(2)(3);

std::deque<int> d;
boost::assign::push_front(d)(1)(2)(3);

std::set<int> s;
boost::assign::insert(s)(1)(2)(3);

std::queue<int> q;
boost::assign::push(q)(1)(2)(3);

}

The four functions boost::assign::push_back(), boost::assign::push_front(), boost::assign::
insert(), and boost::assign::push() are called in this manner because the proxies returned call the iden-
tically named member functions on the container. Example 70.2 adds the three numbers 1, 2, and 3 to the vector
v with three calls to push_back().
Boost.Assign provides additional helper functions you can use to add values to a container, including boost::
assign::add_edge(), which you can use to get a proxy for a graph from Boost.Graph.

354

Chapter 71

Boost.Swap

If you use many Boost libraries and also use std::swap() to swap data, consider using boost::swap() as an
alternative. boost::swap() is provided by Boost.Swap and is defined in boost/swap.hpp.
Example 71.1 Using boost::swap()

#include <boost/swap.hpp>
#include <boost/array.hpp>
#include <iostream>

int main()
{

char c1 = 'a';
char c2 = 'b';

boost::swap(c1, c2);

std::cout << c1 << c2 << '\n';

boost::array<int, 1> a1{{1}};
boost::array<int, 1> a2{{2}};

boost::swap(a1, a2);

std::cout << a1[0] << a2[0] << '\n';
}

boost::swap() does nothing different from std::swap(). However, because many Boost libraries offer spe-
cializations for swapping data that are defined in the namespace boost, boost::swap() can take advantage of
them. In Example 71.1, boost::swap() accesses std::swap() to swap the values of the two char variables
and uses the optimized function boost::swap() from Boost.Array to swap data in the arrays.
Example 71.1 writes ba and 21 to the standard output stream.

355

http://www.boost.org/libs/core/swap.html

Chapter 72

Boost.Operators

Boost.Operators provides numerous classes to automatically overload operators. In Example 72.1, a greater-than
operator is automatically added, even though there is no declaration, because the greater-than operator can be
implemented using the already defined less-than operator.
Example 72.1 Greater-than operator with boost::less_than_comparable

#include <boost/operators.hpp>
#include <string>
#include <utility>
#include <iostream>

struct animal : public boost::less_than_comparable<animal>
{

std::string name;
int legs;

animal(std::string n, int l) : name{std::move(n)}, legs{l} {}

bool operator<(const animal &a) const { return legs < a.legs; }
};

int main()
{

animal a1{"cat", 4};
animal a2{"spider", 8};

std::cout << std::boolalpha << (a2 > a1) << '\n';
}

To automatically add operators, derive a class from classes defined by Boost.Operators in boost/operators.
hpp. If a class is derived from boost::less_than_comparable, then operator>, operator<=, and opera
tor>= are automatically defined.
Because many operators can be expressed in terms of other operators, automatic overloading is possible. For
example, boost::less_than_comparable implements the greater-than operator as the opposite of the less-
than operator; if an object isn’t less than another, it must be greater, assuming they aren’t equal.
If two objects can be equal, use boost::partially_ordered as the base class. By defining operator==,
boost::partially_ordered can determine whether less than really means greater than or equal.
In addition to boost::less_than_comparable and boost::partially_ordered, classes are provided that
allow you to overload arithmetic and logical operators. Classes are also available to overload operators usually
provided by iterators, pointers, or arrays. Because automatic overloading is only possible once other operators
have been defined, the particular operators that must be provided will vary depending on the situation. Consult
the documentation for more information.

356

http://www.boost.org/libs/utility/operators.htm

Index

_
_, xpressive, 36
_1, Boost.Bind, 199
_1, lambda, 202
_2, lambda, 202
_3, lambda, 202
_data, bimaps, 62
_key, bimaps, 62
_s, xpressive, 35
_w, xpressive, 35

A
abort, mpi::environment, 228
absolute, filesystem, 168
acceptor, asio::ip::tcp, 137
access, serialization, 309
accumulate, Boost.Range, 111
accumulator, Boost.Accumulators, 277
accumulator_set, accumulators, 277
accumulators::accumulator_set, 277
accumulators::count, 278
accumulators::features, 278
accumulators::tag::count, 277, 278
accumulators::tag::mean, 278
accumulators::tag::variance, 278
action, Boost.Spirit, 45
adaptor, Boost.Range, 111
adaptors::filter, 112
adaptors::keys, 112
adaptors::tokenize, 112
adaptors::values, 112
add, program_options::options_description, 300
add, program_options::positional_options_description,

304
add_block, simple_segregated_storage, 15
add_child, property_tree::ptree, 99
add_const, Boost.TypeTraits, 241
add_edge, assign, 354
add_edge, Boost.Graph, 116
add_global_attribute, log::core, 294
add_options, program_options::options_description,

300
add_rvalue_reference, Boost.TypeTraits, 241
add_sink, log::core, 290
add_stream, log::sinks::text_ostream_backend, 290
add_vertex, Boost.Graph, 115
addressof, Boost.Utility, 351
adjacency_list, Boost.Graph, 115
adjacency_list::clear, 120

adjacency_list::vertex_descriptor, 116
adjacency_list::vertex_iterator, 116
adjacency_matrix, Boost.Graph, 128
adjacent_vertices, Boost.Graph, 119
advance, fusion, 246
algorithm::all_of, 107
algorithm::all_of_equal, 107
algorithm::any_of, 107
algorithm::any_of_equal, 107
algorithm::contains, 25
algorithm::copy_n, 107
algorithm::copy_until, 108
algorithm::copy_while, 108
algorithm::ends_with, 25
algorithm::equal, 109
algorithm::erase_all_copy, 22
algorithm::erase_first_copy, 22
algorithm::erase_head_copy, 22
algorithm::erase_tail_copy, 22
algorithm::find_first, 22
algorithm::find_head, 22
algorithm::find_if_not, 107
algorithm::find_last, 22
algorithm::find_nth, 22
algorithm::find_regex, 25
algorithm::find_tail, 22
algorithm::hex, 109
algorithm::ierase_all_copy, 25
algorithm::iota, 107, 108
algorithm::iota_n, 108
algorithm::is_any_of, 24
algorithm::is_decreasing, 108
algorithm::is_digit, 24
algorithm::is_increasing, 108
algorithm::is_lower, 24
algorithm::is_partitioned, 107
algorithm::is_permutation, 107
algorithm::is_space, 25
algorithm::is_upper, 24
algorithm::join, 23
algorithm::lexicographical_compare, 25
algorithm::mismatch, 109
algorithm::none_of, 107
algorithm::none_of_equal, 107
algorithm::one_of, 107
algorithm::one_of_equal, 107
algorithm::replace_all_copy, 23
algorithm::replace_first_copy, 23
algorithm::replace_head_copy, 23

357

INDEX INDEX

algorithm::replace_last_copy, 23
algorithm::replace_nth_copy, 23
algorithm::replace_tail_copy, 23
algorithm::split, 25
algorithm::starts_with, 25
algorithm::to_lower, 21
algorithm::to_lower_copy, 21
algorithm::to_upper, 21
algorithm::to_upper_copy, 21
algorithm::trim_copy, 24
algorithm::trim_copy_if, 24
algorithm::trim_left_copy, 24
algorithm::trim_left_copy_if, 24
algorithm::trim_right_copy, 24
algorithm::trim_right_copy_if, 24
algorithm::unhex, 109
all_of, algorithm, 107
all_of_equal, algorithm, 107
all_reduce, mpi, 236
allocator, interprocess, 148
allocator, lockfree, 225
allow_slash_for_short, program_options::command_line_style,

303
allow_unregistered, program_options::command_line_parser,

303
any, Boost.Any, 91
any, dynamic_bitset, 101
any::empty, 92
any::type, 92
any_base_hook, intrusive, 76
any_cast, Boost.Any, 91
any_member_hook, intrusive, 76
any_of, algorithm, 107
any_of_equal, algorithm, 107
any_source, mpi, 229
apply_visitor, Boost.Variant, 94
archive, Boost.Serialization, 307
archive::text_iarchive, 308
archive::text_iarchive::register_type, 318
archive::text_oarchive, 307
archive::text_oarchive::register_type, 318
arg1, phoenix::placeholders, 191
arg2, phoenix::placeholders, 192
arg3, phoenix::placeholders, 192
array, Boost.Array, 63
array, iostreams, 156
array_one, circular_buffer, 68
array_sink, iostreams, 156
array_source, iostreams, 156
array_two, circular_buffer, 68
array_view, multi_array, 78
as, program_options::variable_value, 301
as_file_name_composer, log::sinks::file, 296
asio::async_write, 138
asio::buffer, 138
asio::detail::io_service_impl, 141
asio::detail::task_io_service, 141
asio::detail::win_iocp_io_service, 141
asio::detail::win_iocp_io_service::register_handle, 141

asio::io_service, 132
asio::io_service::run, 133
asio::ip::tcp::acceptor, 137
asio::ip::tcp::acceptor::async_accept, 137
asio::ip::tcp::acceptor::listen, 137
asio::ip::tcp::endpoint, 137
asio::ip::tcp::resolver, 136
asio::ip::tcp::resolver::async_resolve, 136
asio::ip::tcp::resolver::iterator, 137
asio::ip::tcp::resolver::query, 136
asio::ip::tcp::socket, 136
asio::ip::tcp::socket::async_connect, 137
asio::ip::tcp::socket::async_read_some, 137
asio::ip::tcp::socket::async_write_some, 138
asio::ip::tcp::socket::shutdown, 138
asio::posix::stream_descriptor, 142
asio::spawn, 139
asio::steady_timer, 132
asio::steady_timer::async_wait, 133
asio::steady_timer::wait, 133
asio::use_service, 141
asio::windows::object_handle, 140
asio::windows::object_handle::async_wait, 140, 141
asio::windows::overlapped_ptr, 141
asio::windows::overlapped_ptr::complete, 141
asio::windows::overlapped_ptr::get, 141
asio::windows::overlapped_ptr::release, 141
assign::add_edge, 354
assign::insert, 354
assign::list_of, 353
assign::map_list_of, 353
assign::push, 354
assign::push_back, 354
assign::push_front, 354
assign::tuple_list_of, 353
async, Boost.Thread, 218
async, launch, 218
async_accept, asio::ip::tcp::acceptor, 137
async_connect, asio::ip::tcp::socket, 137
async_read_some, asio::ip::tcp::socket, 137
async_resolve, asio::ip::tcp::resolver, 136
async_wait, asio::steady_timer, 133
async_wait, asio::windows::object_handle, 140, 141
async_write, asio, 138
async_write_some, asio::ip::tcp::socket, 138
asynchronous_sink, log::sinks, 289
at, fusion, 246
at, multi_index::random_access, 57
at_key, fusion, 247
atomic, Boost.Atomic, 219
atomic::fetch_add, 220
atomic::is_lock_free, 220
atomic::store, 222
atomic_func, interprocess::managed_shared_memory,

148
attr, log::expressions, 292
attribute_name, log, 291
attribute_value, log, 291
attribute_value_set, log, 290

358

INDEX INDEX

attribute_values, log::attribute_value_set, 290
attribute_values, log::record_view, 292
attributes, thread, 209
auto_cpu_timer, timer, 188
auto_unlink, intrusive, 75
available, filesystem::space_info, 167

B
back, fusion, 247
back, ptr_vector, 9
back_insert_device, iostreams, 156
bad_alloc, interprocess, 147
bad_any_cast, Boost.Any, 92
bad_day_of_month, gregorian, 172
bad_format_string, io, 28
bad_function_call, Boost.Function, 196
bad_lexical_cast, Boost.Conversion, 26
bad_month, gregorian, 172
bad_numeric_cast, numeric, 285
bad_year, gregorian, 172
base_object, serialization, 315
basic_ptree, property_tree, 97
basic_regex, Boost.Regex, 33
basic_string, interprocess, 148
begin, circular_buffer, 68
begin, fusion, 246
begin, property_tree::ptree, 97
begin, tokenizer, 37
begin, uuids::uuid, 323
bernoulli_distribution, random, 283
bidirectionalS, Boost.Graph, 118
big_word, spirit::qi, 44
bimap, Boost.Bimap, 60
bimaps::_data, 62
bimaps::_key, 62
bimaps::list_of, 61
bimaps::multiset_of, 61
bimaps::set_of, 61
bimaps::set_of::modify_data, 62
bimaps::set_of::modify_key, 62
bimaps::unconstrained_set_of, 61
bimaps::unordered_multiset_of, 61
bimaps::unordered_set_of, 61
bimaps::vector_of, 61
bind, Boost.Bind, 199
bind, phoenix, 194
binomial_heap, heap, 71
block, signals2::shared_connection_block, 335
blocking, signals2::shared_connection_block, 335
bool_, spirit::qi, 44
Boost.Accumulators, 277
Boost.Algorithm, 107
Boost.Any, 91
Boost.Array, 63
Boost.Asio, 132
Boost.Assign, 353
Boost.Atomic, 219
Boost.Bimap, 60
Boost.Bind, 198

Boost.Build, ix
Boost.Chrono, 182
Boost.CircularBuffer, 67
Boost.CompressedPair, 104
Boost.Container, 80
Boost.Conversion, 260
Boost.Coroutine, 251
Boost.DateTime, 172
Boost.DynamicBitset, 101
Boost.EnableIf, 242
Boost.Exception, 268
Boost.Filesystem, 161
Boost.Flyweight, 327
Boost.Foreach, 254
Boost.Format, 27
Boost.Function, 196
Boost.Fusion, 244
Boost.Graph, 115
Boost.Heap, 70
Boost.Integer, 275
Boost.Interprocess, 143
Boost.Intrusive, 72
Boost.IOStreams, 155
Boost.Lambda, 202
Boost.LexicalCast, 26
Boost.Lockfree, 223
Boost.Log, 289
Boost.MetaStateMachine, 339
Boost.MinMax, 280
Boost.MPI, 227
Boost.MultiArray, 77
Boost.MultiIndex, 54
Boost.NumericConversion, 285
Boost.Operators, 356
Boost.Optional, 84
Boost.Parameter, 255
Boost.Phoenix, 191
Boost.PointerContainer, 9
Boost.Pool, 14
Boost.ProgramOptions, 299
Boost.PropertyTree, 96
Boost.Random, 282
Boost.Range, 110
Boost.Ref, 201
Boost.Regex, 30
Boost.ScopeExit, 11
Boost.Serialization, 307
Boost.Signals2, 330
Boost.SmartPointers, 3
Boost.Spirit, 40
Boost.StringAlgorithms, 21
Boost.Swap, 355
Boost.System, 264
Boost.Thread, 206
Boost.Tokenizer, 37
Boost.Tribool, 102
Boost.Tuple, 87
Boost.TypeTraits, 240
Boost.Unordered, 64

359

INDEX INDEX

Boost.Utility, 349
Boost.Uuid, 322
Boost.Variant, 93
Boost.Xpressive, 34
BOOST_ATOMIC_INT_LOCK_FREE, Boost.Atomic,

220
BOOST_ATOMIC_LONG_LOCK_FREE, Boost.Atomic,

220
BOOST_BINARY, Boost.Utility, 352
BOOST_BINARY_L, Boost.Utility, 352
BOOST_BINARY_U, Boost.Utility, 352
BOOST_CHRONO_HAS_CLOCK_STEADY, Boost.Chrono,

183
BOOST_CHRONO_HAS_PROCESS_CLOCKS,

Boost.Chrono, 183
BOOST_CHRONO_HAS_THREAD_CLOCK, Boost.Chrono,

183
BOOST_CHRONO_THREAD_CLOCK_IS_STEADY,

Boost.Chrono, 183
BOOST_CHRONO_VERSION, Boost.Chrono, 185
BOOST_CLASS_EXPORT, Boost.Serialization, 318
BOOST_CLASS_VERSION, Boost.Serialization, 312
BOOST_CURRENT_FUNCTION, Boost.Utility, 350
BOOST_DATE_TIME_OPTIONAL_GREGORIAN_TYPES,

Boost.DateTime, 174
BOOST_DISABLE_ASSERTS, Boost.MultiArray, 77
BOOST_FOREACH, Boost.Foreach, 254
BOOST_FUSION_ADAPT_STRUCT, Boost.Fusion,

248
BOOST_LOG, Boost.Log, 289
BOOST_LOG_ATTRIBUTE_KEYWORD, Boost.Log,

293
BOOST_LOG_INLINE_GLOBAL_LOGGER_CTOR_ARGS,

Boost.Log, 298
BOOST_LOG_INLINE_GLOBAL_LOGGER_DEFAULT,

Boost.Log, 298
BOOST_LOG_SCOPED_LOGGER_ATTR, Boost.Log,

294
BOOST_LOG_SEV, Boost.Log, 290
BOOST_MSM_EUML_ACTION, Boost.MetaStateMachine,

341
BOOST_MSM_EUML_DECLARE_ATTRIBUTE,

Boost.MetaStateMachine, 344
BOOST_MSM_EUML_DECLARE_STATE_MACHINE,

Boost.MetaStateMachine, 340
BOOST_MSM_EUML_EVENT, Boost.MetaStateMachine,

340
BOOST_MSM_EUML_FUNCTION, Boost.MetaStateMachine,

345
BOOST_MSM_EUML_STATE, Boost.MetaStateMachine,

340
BOOST_MSM_EUML_STATE_NAME, Boost.MetaStateMachine,

341
BOOST_MSM_EUML_TRANSITION_TABLE,

Boost.MetaStateMachine, 340
BOOST_NO_INT64_T, Boost.Integer, 275
BOOST_NUMERIC_FUNCTIONAL_STD_COMPLEX_SUPPORT,

Boost.Accumulators, 277

BOOST_NUMERIC_FUNCTIONAL_STD_VALARRAY_SUPPORT,
Boost.Accumulators, 277

BOOST_NUMERIC_FUNCTIONAL_STD_VECTOR_SUPPORT,
Boost.Accumulators, 277

BOOST_PARAMETER_CONST_MEMBER_FUNCTION,
Boost.Parameter, 257

BOOST_PARAMETER_FUNCTION, Boost.Parameter,
255

BOOST_PARAMETER_MEMBER_FUNCTION,
Boost.Parameter, 257

BOOST_PARAMETER_NAME, Boost.Parameter,
255

BOOST_PARAMETER_TEMPLATE_KEYWORD,
Boost.Parameter, 257

BOOST_PHOENIX_ADAPT_FUNCTION, Boost.Phoenix,
194

BOOST_POOL_NO_MT, Boost.Pool, 18
BOOST_POSIX_API, Boost.Filesystem, 162
BOOST_REGEX_USE_CPP_LOCALE, Boost.Regex,

33
BOOST_REVERSE_FOREACH, Boost.Foreach, 254
BOOST_SCOPE_EXIT, Boost.ScopeExit, 11
BOOST_SP_ENABLE_DEBUG_HOOKS, Boost.SmartPointers,

7
BOOST_SP_USE_QUICK_ALLOCATOR, Boost.SmartPointers,

6
BOOST_SPIRIT_USE_PHOENIX_V3, Boost.Spirit,

45
BOOST_THROW_EXCEPTION, Boost.Exception,

270
BOOST_TRIBOOL_THIRD_STATE, Boost.Tribool,

103
BOOST_WINDOWS_API, Boost.Filesystem, 162
breadth_first_search, Boost.Graph, 121
broadcast, mpi, 235
buffer, asio, 138
bundled property, Boost.Graph, 124
byte_, spirit::qi, 44

C
cancel, mpi::request, 231
capacity, circular_buffer, 68
capacity, filesystem::space_info, 167
capacity, lockfree, 224
category, system::error_code, 264
category, system::error_condition, 266
ceil, chrono, 185
channel, log::keywords, 297
channel_logger, log::sources, 296
Char_, msm::front::euml, 345
char_separator, Boost.Tokenizer, 37
characters, iostreams::counter, 159
checked_array_delete, Boost.Utility, 350
checked_array_deleter, Boost.Utility, 350
checked_delete, Boost.Utility, 349
checked_deleter, Boost.Utility, 350
chi_squared_distribution, random, 284
chrono::ceil, 185
chrono::duration, 184

360

INDEX INDEX

chrono::duration_cast, 185
chrono::floor, 185
chrono::high_resolution_clock, 183
chrono::hours, 184
chrono::microseconds, 184
chrono::milliseconds, 184
chrono::minutes, 184
chrono::nanoseconds, 184
chrono::process_cpu_clock, 183
chrono::process_real_cpu_clock, 183
chrono::process_system_cpu_clock, 183
chrono::process_user_cpu_clock, 183
chrono::round, 185
chrono::seconds, 184
chrono::steady_clock, 183
chrono::symbol_format, 185
chrono::system_clock, 182
chrono::system_clock::to_time_t, 183
chrono::thread_clock, 183
chrono::time_fmt, 185
chrono::time_point, 184
chrono::time_point_cast, 184
chrono::timezone::local, 185
chrono::timezone::utc, 185
circular buffer, Boost.CircularBuffer, 67
circular_buffer, Boost.CircularBuffer, 67
circular_buffer::array_one, 68
circular_buffer::array_two, 68
circular_buffer::begin, 68
circular_buffer::capacity, 68
circular_buffer::end, 68
circular_buffer::is_linearized, 68
circular_buffer::linearize, 68
circular_buffer::size, 68
circular_buffer_space_optimized, Boost.CircularBuffer,

69
clear, adjacency_list, 120
clear, timer::times, 187
close, iostreams::file_source, 157
close_handle, iostreams, 158
collect_unrecognized, program_options, 303
collective operations, Boost.MPI, 232
combiner, Boost.Signals2, 332
comma separated values, Boost.Tokenizer, 39
command_line_parser, program_options, 303
communicator, Boost.MPI, 228
communicator, mpi, 228
compile, xpressive::sregex, 35
complete, asio::windows::overlapped_ptr, 141
component, iostreams::filtering_stream, 159
composing, program_options::value_semantic, 303
composite_key, multi_index, 59
compressed_pair, Boost.CompressedPair, 104
compressed_pair::first, 104
compressed_pair::second, 104
compressed_sparse_row_graph, Boost.Graph, 129
condition variable, Boost.Interprocess, 150
condition variable, Boost.Thread, 214
condition_variable_any::notify_all, 214

condition_variable_any::wait, 214
connect, signals2::signal, 330
connection, signals2, 334
const_mem_fun, multi_index, 59
const_multi_array_ref, Boost.MultiArray, 79
constant_time_size, intrusive, 75
construct, interprocess::managed_shared_memory, 146
construct, object_pool, 15
consume_all, lockfree::queue, 226
consume_all, lockfree::spsc_queue, 224
consume_one, lockfree::queue, 226
consume_one, lockfree::spsc_queue, 224
container::flat_map, 81
container::flat_set, 81
container::slist, 81
container::stable_vector, 81
container::static_vector, 81
contains, algorithm, 25
contains, gregorian::date_period, 175
contains, local_time::local_time_period, 180
contains, posix_time::time_period, 178
copy, Boost.Range, 111
copy_directory, filesystem, 167
copy_file, filesystem, 167
copy_n, algorithm, 107
copy_n, Boost.Range, 111
copy_until, algorithm, 108
copy_while, algorithm, 108
coroutine, Boost.Coroutine, 251
coroutine, coroutines, 251
coroutines::coroutine, 251
coroutines::coroutine::pull_type, 251
coroutines::coroutine::push_type, 251
count, accumulators, 278
count, accumulators::tag, 277, 278
count, Boost.MultiIndex, 55
count, Boost.Range, 110
count, dynamic_bitset, 101
count, program_options::variables_map, 300
counter, iostreams, 159
counter, log::attributes, 294
cpp_regex_traits, Boost.Regex, 33
cpu_timer, timer, 186
create_symlink, filesystem, 167
cref, Boost.Ref, 201
cregex, xpressive, 35
CSV, Boost.Tokenizer, see comma separated values
current_path, filesystem, 168

D
data, iostreams::mapped_file_source, 157
date, gregorian, 172
date, posix_time::ptime, 176
date_duration, gregorian, 173
date_facet, date_time, 180
date_from_iso_string, gregorian, 173
date_input_facet, date_time, 181
date_period, gregorian, 175
date_time::date_facet, 180

361

INDEX INDEX

date_time::date_input_facet, 181
date_time::next_weekday, 175
date_time::not_a_date_time, 173, 176
date_time::time_facet, 180
date_time::time_input_facet, 181
day, gregorian::date, 172
day_clock, gregorian, 173
day_iterator, gregorian, 175
day_of_week, gregorian::date, 172
day_of_week_type, gregorian::date, 172
days, gregorian::date_duration, 173
decrease, heap::binomial_heap, 71
default_error_condition, system::error_code, 266
default_user_allocator_malloc_free, Boost.Pool, 18
default_user_allocator_new_delete, Boost.Pool, 18
default_value, program_options::value_semantic, 300
deferred, launch, 218
deleter, Boost.SmartPointers, 5
deque, fusion, 247
destroy, interprocess::managed_shared_memory, 147
destroy, object_pool, 15
destroy_ptr, interprocess::managed_shared_memory,

147
detach, thread, 207
details::pool::null_mutex, 18
device, Boost.IOStreams, 155
diagnostic_information, Boost.Exception, 269
digit, spirit::ascii, 41
dijkstra_shortest_paths, Boost.Graph, 124
directedS, Boost.Graph, 118
directory_iterator, filesystem, 168
disable_interruption, this_thread, 209
disconnect, signals2::connection, 334
disconnect, signals2::signal, 331
disconnect_all_slots, signals2::signal, 332
distance, fusion, 246
distribution, Boost.Random, 283
dont_postskip, spirit::qi::skip_flag, 42
double_, spirit::qi, 44
dummy_mutex, signals2, 338
duration, chrono, 184
duration_cast, chrono, 185
dynamic_bitset, Boost.DynamicBitset, 101
dynamic_bitset::any, 101
dynamic_bitset::count, 101
dynamic_bitset::none, 101
dynamic_bitset::push_back, 101
dynamic_bitset::reference::flip, 101
dynamic_bitset::resize, 101
dynamic_bitset::size, 101

E
edge_weight_t, Boost.Graph, 124
edges, Boost.Graph, 116
elapsed, timer::cpu_timer, 187
empty, any, 92
empty, function, 197
empty, signals2::signal, 332
enable_error_info, Boost.Exception, 270

enable_if, Boost.EnableIf, 242
end, circular_buffer, 68
end, fusion, 246
end, property_tree::ptree, 97
end, tokenizer, 37
end, uuids::uuid, 323
end_of_month, gregorian::date, 172
endpoint, asio::ip::tcp, 137
ends_with, algorithm, 25
environment, mpi, 228
environment_iterator, Boost.ProgramOptions, 306
eol, spirit::qi, 44
epoch, Boost.Chrono, 182
equal, algorithm, 109
erase_all_copy, algorithm, 22
erase_first_copy, algorithm, 22
erase_head_copy, algorithm, 22
erase_key, fusion, 247
erase_tail_copy, algorithm, 22
error, program_options, 301
error_category, system, 264
error_code, system, 264
error_condition, system, 266
error_info, Boost.Exception, 269
escaped_list_separator, Boost.Tokenizer, 39
event_, msm::front::euml, 345
exception, Boost.Exception, 268
exception_ptr, Boost.Exception, 268
exclude, mpi::group, 237
exclude_positional, program_options, 303
exclusive lock, Boost.Thread, 212
exists, filesystem, 165
extension, filesystem::path, 164
extents, Boost.MultiArray, 77
extract, log::attribute_name, 291
extract_or_default, log::attribute_name, 291
extract_or_throw, log::attribute_name, 291
extractor, Boost.Accumulators, 278

F
false_type, Boost.TypeTraits, 241
fast_pool_allocator, Boost.Pool, 17
feature, Boost.Accumulators, 278
features, accumulators, 278
fetch_add, atomic, 220
fibonacci_heap, heap, 71
file lock, Boost.Interprocess, 152
file_descriptor_sink, iostreams, 158
file_descriptor_source, iostreams, 158
file_sink, iostreams, 157
file_size, filesystem, 166
file_source, iostreams, 157
file_status, filesystem, 165
filename, filesystem::path, 163
filesystem::absolute, 168
filesystem::copy_directory, 167
filesystem::copy_file, 167
filesystem::create_symlink, 167
filesystem::current_path, 168

362

INDEX INDEX

filesystem::directory_iterator, 168
filesystem::exists, 165
filesystem::file_size, 166
filesystem::file_status, 165
filesystem::filesystem_error, 165
filesystem::filesystem_error::path1, 165
filesystem::filesystem_error::path2, 165
filesystem::is_directory, 165
filesystem::is_regular_file, 165
filesystem::is_symlink, 165
filesystem::last_write_time, 166
filesystem::ofstream, 169
filesystem::ofstream::open, 169
filesystem::path, 161
filesystem::path::extension, 164
filesystem::path::filename, 163
filesystem::path::generic_string, 162
filesystem::path::generic_wstring, 162
filesystem::path::has_filename, 163
filesystem::path::has_parent_path, 163
filesystem::path::has_relative_path, 163
filesystem::path::has_root_directory, 163
filesystem::path::has_root_name, 163
filesystem::path::has_root_path, 163
filesystem::path::make_absolute, 164
filesystem::path::make_preferred, 164
filesystem::path::native, 162
filesystem::path::operator/=, 164
filesystem::path::parent_path, 163
filesystem::path::relative_path, 163
filesystem::path::remove_filename, 164
filesystem::path::replace_extension, 164
filesystem::path::root_directory, 163
filesystem::path::root_name, 163
filesystem::path::root_path, 163
filesystem::path::stem, 164
filesystem::path::string, 162
filesystem::path::wstring, 162
filesystem::recursive_directory_iterator, 169
filesystem::space, 167
filesystem::space_info, 167
filesystem::space_info::available, 167
filesystem::space_info::capacity, 167
filesystem::space_info::free, 167
filesystem::status, 165
filesystem::symlink_status, 165
filesystem_error, filesystem, 165
filter, adaptors, 112
filter_view, fusion, 245
filtering_istream, iostreams, 158
filtering_ostream, iostreams, 158
find, interprocess::managed_shared_memory, 146
find_first, algorithm, 22
find_head, algorithm, 22
find_if_not, algorithm, 107
find_last, algorithm, 22
find_nth, algorithm, 22
find_or_construct, interprocess::managed_shared_memory,

147

find_regex, algorithm, 25
find_tail, algorithm, 22
first, compressed_pair, 104
fixed_sized, lockfree, 225
flat_map, container, 81
flat_set, container, 81
flip, dynamic_bitset::reference, 101
float_, spirit::qi, 44
floor, chrono, 185
flush, log::sinks::asynchronous_sink, 290
flyweight, flyweights, 328
flyweights::flyweight, 328
flyweights::no_locking, 329
flyweights::no_tracking, 329
flyweights::set_factory, 329
for_each, fusion, 244
format, Boost.Format, 27
format, timer::cpu_timer, 186
format::operator%, 27
format_date_time, log::expressions, 295
format_error, io, 28
format_literal, regex_constants, 32
formatting_ostream, log, 292
free, filesystem::space_info, 167
free, simple_segregated_storage, 15
free, singleton_pool, 16
free_n, simple_segregated_storage, 15
from_iso_string, posix_time, 177
from_simple_string, gregorian, 173
from_us_string, gregorian, 173
fsm_, msm::front::euml, 345
function, Boost.Function, 196
function, phoenix, 194
function::empty, 197
function::operator bool, 197
fusion::advance, 246
fusion::at, 246
fusion::at_key, 247
fusion::back, 247
fusion::begin, 246
fusion::deque, 247
fusion::distance, 246
fusion::end, 246
fusion::erase_key, 247
fusion::filter_view, 245
fusion::for_each, 244
fusion::get, 244
fusion::has_key, 247
fusion::list, 247
fusion::make_pair, 247
fusion::make_tuple, 244
fusion::map, 247
fusion::next, 246
fusion::prior, 246
fusion::push_back, 247
fusion::set, 247
fusion::size, 247
fusion::tuple, 244
fusion::vector, 246

363

INDEX INDEX

future (concept), Boost.Thread, 217
future, Boost.Thread, 217
future::get, 217

G
gather, mpi, 233
generic path, Boost.Filesystem, 162
generic_category, system, 265
generic_string, filesystem::path, 162
generic_wstring, filesystem::path, 162
get, asio::windows::overlapped_ptr, 141
get, Boost.Graph, 126
get, Boost.Tuple, 88
get, Boost.Variant, 93
get, fusion, 244
get, future, 217
get, log::core, 289
get, multi_index::multi_index_container, 55
get, optional, 85
get, property_tree::ptree, 98
get, scoped_array, 4
get, scoped_ptr, 3
get, shared_array, 6
get, shared_ptr, 5
get, thread_specific_ptr, 216
get, tuple, 88
get_address, interprocess::mapped_region, 144
get_child, property_tree::ptree, 96
get_child_optional, property_tree::ptree, 99
get_error_info, Boost.Exception, 271
get_future, packaged_task, 218
get_future, promise, 217
get_id, this_thread, 210
get_name, interprocess::shared_memory_object, 144
get_next_size, object_pool, 16
get_optional, property_tree::ptree, 99
get_optional_value_or, Boost.Optional, 85
get_size, interprocess::mapped_region, 144
get_size, interprocess::shared_memory_object, 144
get_value, property_tree::ptree, 96
get_value_or, optional, 85
global_fun, multi_index, 59
grammar, spirit::qi, 49
Gregorian calendar, 172
gregorian::bad_day_of_month, 172
gregorian::bad_month, 172
gregorian::bad_year, 172
gregorian::date, 172
gregorian::date::day, 172
gregorian::date::day_of_week, 172
gregorian::date::day_of_week_type, 172
gregorian::date::end_of_month, 172
gregorian::date::month, 172
gregorian::date::month_type, 172
gregorian::date::year, 172
gregorian::date_duration, 173
gregorian::date_duration::days, 173
gregorian::date_facet::long_month_names, 181
gregorian::date_facet::long_weekday_names, 181

gregorian::date_from_iso_string, 173
gregorian::date_period, 175
gregorian::date_period::contains, 175
gregorian::day_clock, 173
gregorian::day_clock::local_day, 173
gregorian::day_clock::universal_day, 173
gregorian::day_iterator, 175
gregorian::from_simple_string, 173
gregorian::from_us_string, 173
gregorian::month_iterator, 175
gregorian::months, 174
gregorian::week_iterator, 175
gregorian::weeks, 174
gregorian::year_iterator, 175
gregorian::years, 174
group, io, 27
group, mpi, 237
group, mpi::communicator, 237

H
handler, Boost.Asio, 133
hardware_concurrency, thread, 210
has_filename, filesystem::path, 163
has_key, fusion, 247
has_parent_path, filesystem::path, 163
has_plus, Boost.TypeTraits, 241
has_pre_increment, Boost.TypeTraits, 241
has_relative_path, filesystem::path, 163
has_root_directory, filesystem::path, 163
has_root_name, filesystem::path, 163
has_root_path, filesystem::path, 163
has_trivial_copy, Boost.TypeTraits, 241
has_virtual_destructor, Boost.TypeTraits, 241
hash_combine, Boost.Unordered, 65
hash_setS, Boost.Graph, 118
hashed_non_unique, multi_index, 55
hashed_unique, multi_index, 56
heap::binomial_heap, 71
heap::binomial_heap::decrease, 71
heap::binomial_heap::increase, 71
heap::binomial_heap::merge, 71
heap::binomial_heap::ordered_begin, 71
heap::binomial_heap::ordered_end, 71
heap::binomial_heap::push, 71
heap::binomial_heap::top, 71
heap::binomial_heap::update, 71
heap::fibonacci_heap, 71
heap::priority_queue, 70
hex, algorithm, 109
high_resolution_clock, chrono, 183
hook, Boost.Intrusive, 72
hours, chrono, 184
hours, posix_time::time_duration, 177

I
I/O object, Boost.Asio, 132
I/O service object, Boost.Asio, 132
I/O service, Boost.Asio, 132
identity, multi_index, 59

364

INDEX INDEX

ierase_all_copy, algorithm, 25
if_, phoenix, 195
if_then, lambda, 203
if_then_else, lambda, 203
if_then_else_return, lambda, 203
imbue, regex, 33
implicit_value, program_options::value_semantic, 302
in_edges, Boost.Graph, 119
include, mpi::group, 237
incomplete type, Boost.Container, 80
increase, heap::binomial_heap, 71
indeterminate, Boost.Tribool, 102
indeterminate, logic, 102
index_range, multi_array_types, 78
indexed_by, multi_index, 55
indices, Boost.MultiArray, 78
indirect_fun, Boost.PointerContainer, 10
initialized, mpi::environment, 228
insert, assign, 354
insert, Boost.MultiIndex, 55
INT64_C, Boost.Integer, 276
int8_t, Boost.Integer, 275
Int_, msm::front::euml, 345
int_, spirit::qi, 44
int_fast8_t, Boost.Integer, 275
int_least8_t, Boost.Integer, 275
integer_range, Boost.Range, 113
interprocess::allocator, 148
interprocess::bad_alloc, 147
interprocess::basic_string, 148
interprocess::interprocess_exception, 144
interprocess::interprocess_mutex, 150
interprocess::interprocess_mutex::timed_lock, 150
interprocess::interprocess_mutex::try_lock, 150
interprocess::interprocess_recursive_mutex, 150
interprocess::managed_shared_memory, 146
interprocess::managed_shared_memory::atomic_func,

148
interprocess::managed_shared_memory::construct, 146
interprocess::managed_shared_memory::destroy, 147
interprocess::managed_shared_memory::destroy_ptr,

147
interprocess::managed_shared_memory::find, 146
interprocess::managed_shared_memory::find_or_construct,

147
interprocess::map, 148
interprocess::mapped_region, 144
interprocess::mapped_region::get_address, 144
interprocess::mapped_region::get_size, 144
interprocess::named_condition, 151
interprocess::named_condition::notify_all, 151
interprocess::named_condition::wait, 151
interprocess::named_mutex, 150
interprocess::named_mutex::lock, 150
interprocess::named_mutex::timed_lock, 150
interprocess::named_mutex::try_lock, 150
interprocess::named_mutex::unlock, 150
interprocess::named_recursive_mutex, 150
interprocess::open_or_create, 143

interprocess::read_write, 144
interprocess::remove_shared_memory_on_destroy, 145
interprocess::shared_memory_object, 143
interprocess::shared_memory_object::get_name, 144
interprocess::shared_memory_object::get_size, 144
interprocess::shared_memory_object::remove, 145
interprocess::shared_memory_object::truncate, 144
interprocess::string, 148
interprocess::vector, 148
interprocess::windows_shared_memory, 145
interprocess_exception, interprocess, 144
interprocess_mutex, interprocess, 150
interprocess_recursive_mutex, interprocess, 150
interrupt, thread, 207
interruption point, Boost.Thread, 207
intersection, local_time::local_time_period, 180
intersection, posix_time::time_period, 178
intmax_t, Boost.Integer, 276
intrusive container, Boost.Intrusive, 72
intrusive::any_base_hook, 76
intrusive::any_member_hook, 76
intrusive::auto_unlink, 75
intrusive::constant_time_size, 75
intrusive::link_mode, 75
intrusive::list, 73
intrusive::list::pop_back_and_dispose, 74
intrusive::list::push_back, 73
intrusive::list::size, 75
intrusive::list_base_hook, 72
intrusive::list_member_hook, 76
intrusive::member_hook, 76
intrusive::set, 75
intrusive::set_member_hook, 76
intrusive::slist, 76
intrusive::unordered_set, 76
intrusive_ptr, Boost.SmartPointers, 8
intrusive_ptr_add_ref, Boost.SmartPointers, 8
intrusive_ptr_release, Boost.SmartPointers, 8
invalid_syntax, program_options, 301
io::bad_format_string, 28
io::format_error, 28
io::group, 27
io_service, asio, 132
io_service_impl, asio::detail, 141
iostreams::array, 156
iostreams::array_sink, 156
iostreams::array_source, 156
iostreams::back_insert_device, 156
iostreams::close_handle, 158
iostreams::counter, 159
iostreams::counter::characters, 159
iostreams::counter::lines, 159
iostreams::file_descriptor_sink, 158
iostreams::file_descriptor_source, 158
iostreams::file_sink, 157
iostreams::file_source, 157
iostreams::file_source::close, 157
iostreams::file_source::is_open, 157
iostreams::filtering_istream, 158

365

INDEX INDEX

iostreams::filtering_ostream, 158
iostreams::filtering_ostream::pop, 158
iostreams::filtering_ostream::push, 158
iostreams::filtering_stream::component, 159
iostreams::mapped_file_sink, 157
iostreams::mapped_file_source, 157
iostreams::mapped_file_source::data, 157
iostreams::never_close_handle, 158
iostreams::regex_filter, 158
iostreams::stream, 156
iostreams::zlib_compressor, 160
iostreams::zlib_decompressor, 160
iota, algorithm, 107, 108
iota_n, algorithm, 108
iptree, property_tree, 97
irange, Boost.Range, 113
irecv, mpi::communicator, 231
is_any_of, algorithm, 24
is_arithmetic, Boost.TypeTraits, 240
is_decreasing, algorithm, 108
is_digit, algorithm, 24
is_directory, filesystem, 165
is_floating_point, Boost.TypeTraits, 240
is_in_range, log::expressions, 295
is_increasing, algorithm, 108
is_initialized, optional, 85
is_integral, Boost.TypeTraits, 240
is_linearized, circular_buffer, 68
is_lock_free, atomic, 220
is_lower, algorithm, 24
is_nil, uuids::uuid, 323
is_open, iostreams::file_source, 157
is_partitioned, algorithm, 107
is_permutation, algorithm, 107
is_reference, Boost.TypeTraits, 240
is_regular_file, filesystem, 165
is_same, Boost.TypeTraits, 241
is_sorted, Boost.Range, 111
is_space, algorithm, 25
is_symlink, filesystem, 165
is_upper, algorithm, 24
isend, mpi::communicator, 231
istream_range, Boost.Range, 113
iterator, asio::ip::tcp::resolver, 137
iterator_range, Boost.Range, 113
iterator_range, Boost.StringAlgorithms, 23

J
join, algorithm, 23
join, thread, 206
join_all, thread_group, 210

K
kernel space, Boost.Chrono, 183
kernel space, Boost.Timer, 186
key extractor, Boost.MultiIndex, 59
keys, adaptors, 112

L

lambda::_1, 202
lambda::_2, 202
lambda::_3, 202
lambda::if_then, 203
lambda::if_then_else, 203
lambda::if_then_else_return, 203
last_write_time, filesystem, 166
launch::async, 218
launch::deferred, 218
lazy evaluation, Boost.Xpressive, 36
LCID, Boost.Regex, 33
less_than_comparable, Boost.Operators, 356
lexeme, spirit::qi, 43
lexical_cast, Boost.LexicalCast, 26
lexicographical_compare, algorithm, 25
linearize, circular_buffer, 68
lines, iostreams::counter, 159
link_mode, intrusive, 75
list, fusion, 247
list, intrusive, 73
list_base_hook, intrusive, 72
list_member_hook, intrusive, 76
list_of, assign, 353
list_of, bimaps, 61
listen, asio::ip::tcp::acceptor, 137
listS, Boost.Graph, 118
little_word, spirit::qi, 44
local, chrono::timezone, 185
local_clock, log::attribute, 294
local_date_time, local_time, 178, 180
local_day, gregorian::day_clock, 173
local_time, local_time::local_date_time, 179
local_time, posix_time::second_clock, 177
local_time::local_date_time, 178, 180
local_time::local_date_time::local_time, 179
local_time::local_date_time::local_time_in, 180
local_time::local_time_period, 180
local_time::local_time_period::contains, 180
local_time::local_time_period::intersection, 180
local_time::local_time_period::merge, 180
local_time::posix_time_zone, 178
local_time::time_zone, 179
local_time::time_zone_ptr, 179
local_time_in, local_time::local_date_time, 180
local_time_period, local_time, 180
lock, Boost.Interprocess, 151
lock, interprocess::named_mutex, 150
lock, mutex, 210
lock, weak_ptr, 7
lock_guard, Boost.Thread, 211
lockfree::allocator, 225
lockfree::capacity, 224
lockfree::fixed_sized, 225
lockfree::queue, 224
lockfree::queue::consume_all, 226
lockfree::queue::consume_one, 226
lockfree::queue::push, 226
lockfree::queue::reserve, 225
lockfree::spsc_queue, 223

366

INDEX INDEX

lockfree::spsc_queue::consume_all, 224
lockfree::spsc_queue::consume_one, 224
lockfree::spsc_queue::pop, 223
lockfree::spsc_queue::push, 224
lockfree::stack, 226
log::attribute::local_clock, 294
log::attribute_name, 291
log::attribute_name::extract, 291
log::attribute_name::extract_or_default, 291
log::attribute_name::extract_or_throw, 291
log::attribute_value, 291
log::attribute_value_set, 290
log::attribute_value_set::attribute_values, 290
log::attributes::counter, 294
log::core::add_global_attribute, 294
log::core::add_sink, 290
log::core::get, 289
log::core::set_exception_handler, 298
log::expressions::attr, 292
log::expressions::attribute_keyword::or_default, 296
log::expressions::format_date_time, 295
log::expressions::is_in_range, 295
log::expressions::smessage, 292
log::expressions::stream, 292
log::formatting_ostream, 292
log::keywords::channel, 297
log::make_exception_handler, 298
log::make_exception_suppressor, 298
log::record, 290
log::record_view, 292
log::record_view::attribute_values, 292
log::sinks::asynchronous_sink, 289
log::sinks::asynchronous_sink::flush, 290
log::sinks::asynchronous_sink::set_filter, 290
log::sinks::asynchronous_sink::set_formatter, 292
log::sinks::file::as_file_name_composer, 296
log::sinks::synchronous_sink, 296
log::sinks::text_multifile_backend, 296
log::sinks::text_multifile_backend::set_file_name_composer,

296
log::sinks::text_ostream_backend, 289
log::sinks::text_ostream_backend::add_stream, 290
log::sources::channel_logger, 296
log::sources::logger, 289
log::visit, 291
logger, log::sources, 289
logic::indeterminate, 102
logic::tribool, 102
long_month_names, gregorian::date_facet, 181
long_weekday_names, gregorian::date_facet, 181
lower_bound, multi_index::ordered_non_unique, 57

M
make_absolute, filesystem::path, 164
make_array, serialization, 320
make_bfs_visitor, Boost.Graph, 121
make_binary_object, serialization, 321
make_error_code, system::errc, 264
make_exception_handler, log, 298

make_exception_suppressor, log, 298
make_optional, Boost.Optional, 85
make_pair, fusion, 247
make_preferred, filesystem::path, 164
make_shared, Boost.SmartPointers, 5
make_tuple, Boost.Tuple, 87
make_tuple, fusion, 244
make_unsigned, Boost.TypeTraits, 241
malloc, object_pool, 15
malloc, simple_segregated_storage, 15
malloc, singleton_pool, 16
malloc_n, simple_segregated_storage, 15
managed_shared_memory, interprocess, 146
map, fusion, 247
map, interprocess, 148
map_list_of, assign, 353
mapped_file_sink, iostreams, 157
mapped_file_source, iostreams, 157
mapped_region, interprocess, 144
mapS, Boost.Graph, 118
max, random::mt19937, 282
max_element, Boost.Range, 111
mean, accumulators::tag, 278
mem_fun, multi_index, 59
member, multi_index, 55
member_hook, intrusive, 76
memory order, Boost.Atomic, 220
memory_order_acquire, Boost.Atomic, 222
memory_order_relaxed, Boost.Atomic, 221
memory_order_release, Boost.Atomic, 222
memory_order_seq_cst, Boost.Atomic, 221
merge, heap::binomial_heap, 71
merge, local_time::local_time_period, 180
merge, posix_time::time_period, 178
message, system::error_category, 265
microsec_clock, posix_time, 177
microseconds, chrono, 184
milliseconds, chrono, 184
min, random::mt19937, 282
minmax, Boost.MinMax, 280
minmax_element, Boost.MinMax, 280
minutes, chrono, 184
minutes, posix_time::time_duration, 177
mismatch, algorithm, 109
modify, Boost.MultiIndex, 56
modify_data, bimaps::set_of, 62
modify_key, bimaps::set_of, 62
monotonic time, Boost.Chrono, 183
month, gregorian::date, 172
month_iterator, gregorian, 175
month_type, gregorian::date, 172
months, gregorian, 174
mpi::all_reduce, 236
mpi::any_source, 229
mpi::broadcast, 235
mpi::communicator, 228
mpi::communicator::group, 237
mpi::communicator::irecv, 231
mpi::communicator::isend, 231

367

INDEX INDEX

mpi::communicator::rank, 228
mpi::communicator::recv, 229
mpi::communicator::send, 229
mpi::communicator::size, 228
mpi::communicator::split, 236
mpi::environment, 228
mpi::environment::abort, 228
mpi::environment::initialized, 228
mpi::environment::processor_name, 228
mpi::gather, 233
mpi::group, 237
mpi::group::exclude, 237
mpi::group::include, 237
mpi::group::rank, 237
mpi::reduce, 235
mpi::request, 231
mpi::request::cancel, 231
mpi::request::test, 231
mpi::scatter, 234
mpi::status, 229
mpi::status::source, 229
mpi::test_all, 232
mpi::test_any, 232
mpi::test_some, 232
mpi::wait_all, 232
mpi::wait_any, 232
mpi::wait_some, 232
MPI_Finalize, 228
MPI_Init, 228
MPICH, Boost.MPI, 227
mpiexec, Boost.MPI, 227
msm::back::state_machine, 340
msm::back::state_machine::process_event, 340
msm::front::euml::Char_, 345
msm::front::euml::event_, 345
msm::front::euml::fsm_, 345
msm::front::euml::Int_, 345
msm::front::euml::state_, 345
msm::front::euml::String_, 345
mt19937, random, 282
multi_array, Boost.MultiArray, 77
multi_array::array_view, 78
multi_array::origin, 77
multi_array::reference, 78
multi_array_ref, Boost.MultiArray, 79
multi_array_types::index_range, 78
multi_index::composite_key, 59
multi_index::const_mem_fun, 59
multi_index::global_fun, 59
multi_index::hashed_non_unique, 55
multi_index::hashed_unique, 56
multi_index::identity, 59
multi_index::indexed_by, 55
multi_index::mem_fun, 59
multi_index::member, 55
multi_index::multi_index_container, 54
multi_index::multi_index_container::get, 55
multi_index::multi_index_container::nth_index, 55
multi_index::ordered_non_unique, 57

multi_index::ordered_non_unique::lower_bound, 57
multi_index::ordered_non_unique::upper_bound, 57
multi_index::random_access, 57
multi_index::random_access::at, 57
multi_index::random_access::operator[], 57
multi_index::sequenced, 57
multi_index_container, multi_index, 54
multiset_of, bimaps, 61
multitoken, program_options::value_semantic, 303
mutex (concept), Boost.Thread, 210
mutex, Boost.Thread, 210
mutex::lock, 210
mutex::try_lock, 212
mutex::unlock, 210
mutex_type, signals2::keywords, 338

N
name, system::error_category, 265
named_condition, interprocess, 151
named_mutex, interprocess, 150
named_recursive_mutex, interprocess, 150
nanoseconds, chrono, 184
native path, Boost.Filesystem, 162
native, filesystem::path, 162
negative_overflow, numeric, 285
never_close_handle, iostreams, 158
next, Boost.Utility, 350
next, fusion, 246
next_weekday, date_time, 175
nil_generator, uuids, 323
no_locking, flyweights, 329
no_property, Boost.Graph, 124
no_tracking, flyweights, 329
NO_ZLIB, Boost.IOStreams, 160
non-deterministic random number generator, Boost.Random,

283
noncopyable, Boost.Utility, 351
none, dynamic_bitset, 101
none_of, algorithm, 107
none_of_equal, algorithm, 107
normal_distribution, random, 284
not_a_date_time, date_time, 173, 176
notifier, program_options::value_semantic, 300
notify, program_options, 301
notify_all, condition_variable_any, 214
notify_all, interprocess::named_condition, 151
nth_index, multi_index::multi_index_container, 55
null_mutex, details::pool, 18
num_edges, Boost.Graph, 120
num_slots, signals2::signal, 332
num_vertices, Boost.Graph, 120
numeric::bad_numeric_cast, 285
numeric::negative_overflow, 285
numeric::positive_overflow, 285
numeric_cast, Boost.NumericConversion, 285

O
object_handle, asio::windows, 140
object_pool, Boost.Pool, 15

368

INDEX INDEX

object_pool::construct, 15
object_pool::destroy, 15
object_pool::get_next_size, 16
object_pool::malloc, 15
object_pool::set_next_size, 16
offset_separator, Boost.Tokenizer, 39
ofstream, filesystem, 169
on_tree_edge, Boost.Graph, 121
one_of, algorithm, 107
one_of_equal, algorithm, 107
Open MPI, Boost.MPI, 227
open, filesystem::ofstream, 169
open_or_create, interprocess, 143
operator bool, function, 197
operator bool, scoped_array, 4
operator bool, scoped_ptr, 3
operator bool, shared_array, 6
operator bool, shared_ptr, 5
operator*, scoped_ptr, 3
operator*, shared_ptr, 5
operator*, thread_specific_ptr, 216
operator->, shared_ptr, 5
operator->, thread_specific_ptr, 216
operator/=, filesystem::path, 164
operator<<, Boost.Serialization, 307
operator>>, Boost.Serialization, 309
operator[], multi_index::random_access, 57
operator[], scoped_array, 4
operator[], shared_array, 6
operator%, format, 27
operator&, Boost.Serialization, 309
optional, Boost.Optional, 84
optional, parameter, 259
optional::get, 85
optional::get_value_or, 85
optional::is_initialized, 85
optional_last_value, signals2, 333
options, program_options::command_line_parser, 303
options_description, program_options, 300
or_default, log::expressions::attribute_keyword, 296
ordered_begin, heap::binomial_heap, 71
ordered_end, heap::binomial_heap, 71
ordered_free, singleton_pool, 16
ordered_malloc, singleton_pool, 16
ordered_non_unique, multi_index, 57
origin, multi_array, 77
out_edges, Boost.Graph, 119
overlapped_ptr, asio::windows, 141
owns_lock, unique_lock, 211

P
packaged_task, Boost.Thread, 218
packaged_task::get_future, 218
parallel computing, Boost.MPI, 227
parameter::optional, 259
parameter::parameters, 257
parameter::required, 257
parameter::value_type, 258
parameter::void_, 259

parameters, parameter, 257
parent_path, filesystem::path, 163
parse, spirit::qi, 41
parse_command_line, program_options, 300
parse_config_file, program_options, 305
parse_environment, program_options, 306
parsed_options, program_options, 300
partially_ordered, Boost.Operators, 356
path, filesystem, 161
path1, filesystem::filesystem_error, 165
path2, filesystem::filesystem_error, 165
path_type, property_tree::ptree, 97
phoenix::bind, 194
phoenix::function, 194
phoenix::if_, 195
phoenix::placeholders::arg1, 191
phoenix::placeholders::arg2, 192
phoenix::placeholders::arg3, 192
phoenix::ref, 195
phoenix::val, 193
phrase_parse, spirit::qi, 41
polymorphic_cast, Boost.Conversion, 260
polymorphic_downcast, Boost.Conversion, 260
pool_allocator, Boost.Pool, 17
pop, iostreams::filtering_ostream, 158
pop, lockfree::spsc_queue, 223
pop_back_and_dispose, intrusive::list, 74
positional, program_options::command_line_parser,

304
positional_options_description, program_options, 304
positive_overflow, numeric, 285
posix_time::from_iso_string, 177
posix_time::microsec_clock, 177
posix_time::ptime, 176
posix_time::ptime::date, 176
posix_time::ptime::time_of_day, 176
posix_time::second_clock, 177
posix_time::second_clock::local_time, 177
posix_time::second_clock::universal_time, 177
posix_time::time_duration, 177
posix_time::time_duration::hours, 177
posix_time::time_duration::minutes, 177
posix_time::time_duration::seconds, 177
posix_time::time_duration::total_seconds, 177
posix_time::time_iterator, 178
posix_time::time_period, 178
posix_time::time_period::contains, 178
posix_time::time_period::intersection, 178
posix_time::time_period::merge, 178
posix_time_zone, local_time, 178
postskip, spirit::qi::skip_flag, 42
predecessor_map, Boost.Graph, 125
prior, Boost.Utility, 350
prior, fusion, 246
priority_queue, heap, 70
process_cpu_clock, chrono, 183
process_event, msm::back::state_machine, 340
process_real_cpu_clock, chrono, 183
process_system_cpu_clock, chrono, 183

369

INDEX INDEX

process_user_cpu_clock, chrono, 183
processor_name, mpi::environment, 228
program_options::collect_unrecognized, 303
program_options::command_line_parser, 303
program_options::command_line_parser::allow_unregistered,

303
program_options::command_line_parser::options, 303
program_options::command_line_parser::positional,

304
program_options::command_line_parser::run, 303
program_options::command_line_parser::style, 303
program_options::command_line_style::allow_slash_for_short,

303
program_options::error, 301
program_options::exclude_positional, 303
program_options::invalid_syntax, 301
program_options::notify, 301
program_options::options_description, 300
program_options::options_description::add, 300
program_options::options_description::add_options,

300
program_options::parse_command_line, 300
program_options::parse_config_file, 305
program_options::parse_environment, 306
program_options::parsed_options, 300
program_options::positional_options_description, 304
program_options::positional_options_description::add,

304
program_options::store, 300
program_options::value, 300
program_options::value_semantic, 300
program_options::value_semantic::composing, 303
program_options::value_semantic::default_value, 300
program_options::value_semantic::implicit_value, 302
program_options::value_semantic::multitoken, 303
program_options::value_semantic::notifier, 300
program_options::value_semantic::zero_tokens, 303
program_options::variable_value, 301
program_options::variable_value::as, 301
program_options::variable_value::value, 301
program_options::variables_map, 300
program_options::variables_map::count, 300
promise (concept), Boost.Thread, 217
promise, Boost.Thread, 217
promise::get_future, 217
promise::set_value, 217
property map, Boost.Graph, 121
property, Boost.Graph, 124
property_tree::basic_ptree, 97
property_tree::info_parser::read_info, 100
property_tree::info_parser::write_info, 100
property_tree::ini_parser::read_ini, 100
property_tree::ini_parser::write_ini, 100
property_tree::iptree, 97
property_tree::json_parser::read_json, 99
property_tree::json_parser::write_json, 99
property_tree::ptree, 96
property_tree::ptree::add_child, 99
property_tree::ptree::begin, 97

property_tree::ptree::end, 97
property_tree::ptree::get, 98
property_tree::ptree::get_child, 96
property_tree::ptree::get_child_optional, 99
property_tree::ptree::get_optional, 99
property_tree::ptree::get_value, 96
property_tree::ptree::path_type, 97
property_tree::ptree::put, 96
property_tree::ptree::put_child, 99
property_tree::xml_parser::read_xml, 100
property_tree::xml_parser::write_xml, 100
pseudo-random number generator, Boost.Random, 282
ptime, posix_time, 176
ptr_back_insert_iterator, ptr_container, 10
ptr_back_inserter, ptr_container, 10
ptr_container::ptr_back_insert_iterator, 10
ptr_container::ptr_back_inserter, 10
ptr_container::ptr_front_inserter, 10
ptr_container::ptr_inserter, 10
ptr_deque, Boost.PointerContainer, 10
ptr_front_inserter, ptr_container, 10
ptr_inserter, ptr_container, 10
ptr_list, Boost.PointerContainer, 10
ptr_map, Boost.PointerContainer, 10
ptr_set, Boost.PointerContainer, 9
ptr_unordered_map, Boost.PointerContainer, 10
ptr_unordered_set, Boost.PointerContainer, 10
ptr_vector, Boost.PointerContainer, 9
ptr_vector::back, 9
ptree, property_tree, 96
pull_type, coroutines::coroutine, 251
purge_memory, singleton_pool, 16
push, assign, 354
push, heap::binomial_heap, 71
push, iostreams::filtering_ostream, 158
push, lockfree::queue, 226
push, lockfree::spsc_queue, 224
push_back, assign, 354
push_back, Boost.Range, 111
push_back, dynamic_bitset, 101
push_back, fusion, 247
push_back, intrusive::list, 73
push_front, assign, 354
push_type, coroutines::coroutine, 251
put, property_tree::ptree, 96
put_child, property_tree::ptree, 99

Q
query, asio::ip::tcp::resolver, 136
queue, lockfree, 224

R
RAII, Boost.ScopeExit, 11
random::bernoulli_distribution, 283
random::chi_squared_distribution, 284
random::mt19937, 282
random::mt19937::max, 282
random::mt19937::min, 282
random::mt19937::result_type, 282

370

INDEX INDEX

random::normal_distribution, 284
random::random_device, 283
random::uniform_int_distribution, 284
random_access, multi_index, 57
random_device, random, 283
random_generator, uuids, 322
random_shuffle, Boost.Range, 111, 114
random_spanning_tree, Boost.Graph, 127
range, Boost.Range, 110
rank, mpi::communicator, 228
rank, mpi::group, 237
read_info, property_tree::info_parser, 100
read_ini, property_tree::ini_parser, 100
read_json, property_tree::json_parser, 99
read_write, interprocess, 144
read_xml, property_tree::xml_parser::read_xml, 100
record, log, 290
record_distances, Boost.Graph, 121
record_predecessors, Boost.Graph, 122
record_view, log, 292
recursive_directory_iterator, filesystem, 169
recv, mpi::communicator, 229
reduce, mpi, 235
ref, Boost.Ref, 201
ref, phoenix, 195
ref, xpressive, 36
reference, multi_array, 78
regex, Boost.Regex, 30
regex::imbue, 33
regex_constants::format_literal, 32
regex_filter, iostreams, 158
regex_iterator, xpressive, 36
regex_match, Boost.Regex, 30
regex_match, xpressive, 34
regex_replace, Boost.Regex, 31
regex_replace, xpressive, 34
regex_search, Boost.Regex, 30
regex_search, xpressive, 34
regex_token_iterator, Boost.Regex, 32
regex_token_iterator, xpressive, 36
register_handle, asio::detail::win_iocp_io_service, 141
register_type, archive::text_iarchive, 318
register_type, archive::text_oarchive, 318
regular expression, Boost.Regex, 30
regular expression, Boost.Xpressive, 34
relative_path, filesystem::path, 163
release, asio::windows::overlapped_ptr, 141
release, unique_lock, 211
release_memory, singleton_pool, 16
remove, interprocess::shared_memory_object, 145
remove_erase, Boost.Range, 111
remove_filename, filesystem::path, 164
remove_pointer, Boost.TypeTraits, 241
remove_shared_memory_on_destroy, interprocess, 145
replace_all_copy, algorithm, 23
replace_extension, filesystem::path, 164
replace_first_copy, algorithm, 23
replace_head_copy, algorithm, 23
replace_last_copy, algorithm, 23

replace_nth_copy, algorithm, 23
replace_tail_copy, algorithm, 23
request, mpi, 231
required, parameter, 257
reserve, lockfree::queue, 225
reset, scoped_array, 4
reset, scoped_ptr, 3
reset, shared_array, 6
reset, shared_ptr, 4
reset, thread_specific_ptr, 216
resize, dynamic_bitset, 101
resolver, asio::ip::tcp, 136
result_type, random::mt19937, 282
resume, timer::cpu_timer, 187
root_directory, filesystem::path, 163
root_name, filesystem::path, 163
root_path, filesystem::path, 163
round, chrono, 185
rule, spirit::qi, 47
run, asio::io_service, 133
run, program_options::command_line_parser, 303

S
scatter, mpi, 234
scoped_array, Boost.SmartPointers, 4
scoped_array::get, 4
scoped_array::operator bool, 4
scoped_array::operator[], 4
scoped_array::reset, 4
scoped_ptr, Boost.SmartPointers, 3
scoped_ptr::get, 3
scoped_ptr::operator bool, 3
scoped_ptr::operator*, 3
scoped_ptr::reset, 3
scoped_thread, Boost.Thread, 207
second, compressed_pair, 104
second_clock, posix_time, 177
seconds, chrono, 184
seconds, posix_time::time_duration, 177
segment manager, Boost.Interprocess, 148
selector, Boost.Graph, 117
semaphore, Boost.Interprocess, 152
send, mpi::communicator, 229
sequenced, multi_index, 57
sequential consistency, Boost.Atomic, 221
serialization::access, 309
serialization::base_object, 315
serialization::make_array, 320
serialization::make_binary_object, 321
serialize, Boost.Serialization, 309
set, fusion, 247
set, intrusive, 75
set_exception_handler, log::core, 298
set_factory, flyweights, 329
set_file_name_composer, log::sinks::text_multifile_backend,

296
set_filter, log::sinks::asynchronous_sink, 290
set_formatter, log::sinks::asynchronous_sink, 292
set_member_hook, intrusive, 76

371

INDEX INDEX

set_next_size, object_pool, 16
set_of, bimaps, 61
set_stack_size, thread::attributes, 209
set_value, promise, 217
setS, Boost.Graph, 118
severity_logger, sources, 290
shared lock, Boost.Thread, 212
shared_array::get, 6
shared_array::operator bool, 6
shared_array::operator[], 6
shared_array::reset, 6
shared_connection_block, signals2, 334
shared_lock, Boost.Thread, 212
shared_memory_object, interprocess, 143
shared_mutex, Boost.Thread, 212
shared_ptr, Boost.SmartPointers, 4
shared_ptr::get, 5
shared_ptr::operator bool, 5
shared_ptr::operator*, 5
shared_ptr::operator->, 5
shared_ptr::reset, 4
shutdown, asio::ip::tcp::socket, 138
signal, signals2, 330
signal_type, signals2, 338
signals2::connection, 334
signals2::connection::disconnect, 334
signals2::dummy_mutex, 338
signals2::keywords::mutex_type, 338
signals2::optional_last_value, 333
signals2::shared_connection_block, 334
signals2::shared_connection_block::block, 335
signals2::shared_connection_block::blocking, 335
signals2::shared_connection_block::unblock, 334
signals2::signal, 330
signals2::signal::connect, 330
signals2::signal::disconnect, 331
signals2::signal::disconnect_all_slots, 332
signals2::signal::empty, 332
signals2::signal::num_slots, 332
signals2::signal::slot_type::track, 336
signals2::signal::slot_type::track_foreign, 336
signals2::signal_type, 338
signals2::signal_type::type, 338
simple segregated storage, Boost.Pool, 14
simple_segregated_storage, Boost.Pool, 14
simple_segregated_storage::add_block, 15
simple_segregated_storage::free, 15
simple_segregated_storage::free_n, 15
simple_segregated_storage::malloc, 15
simple_segregated_storage::malloc_n, 15
singleton_pool, Boost.Pool, 16
singleton_pool::free, 16
singleton_pool::malloc, 16
singleton_pool::ordered_free, 16
singleton_pool::ordered_malloc, 16
singleton_pool::purge_memory, 16
singleton_pool::release_memory, 16
size, circular_buffer, 68
size, dynamic_bitset, 101

size, fusion, 247
size, intrusive::list, 75
size, mpi::communicator, 228
size, uuids::uuid, 323
sleep_for, this_thread, 207
slist, container, 81
slist, intrusive, 76
smatch, Boost.Regex, 30
smessage, log::expressions, 292
socket, asio::ip::tcp, 136
source, Boost.Graph, 119
source, mpi::status, 229
sources::severity_logger, 290
space, filesystem, 167
space, spirit::ascii, 41
space_info, filesystem, 167
space_type, spirit::ascii, 47
spawn, asio, 139
spirit::ascii::digit, 41
spirit::ascii::space, 41
spirit::ascii::space_type, 47
spirit::qi::big_word, 44
spirit::qi::bool_, 44
spirit::qi::byte_, 44
spirit::qi::double_, 44
spirit::qi::eol, 44
spirit::qi::float_, 44
spirit::qi::grammar, 49
spirit::qi::int_, 44
spirit::qi::lexeme, 43
spirit::qi::little_word, 44
spirit::qi::parse, 41
spirit::qi::phrase_parse, 41
spirit::qi::rule, 47
spirit::qi::skip_flag::dont_postskip, 42
spirit::qi::skip_flag::postskip, 42
spirit::qi::word, 44
split, algorithm, 25
split, mpi::communicator, 236
spsc_queue, lockfree, 223
sregex, xpressive, 34
stable_vector, container, 81
stack, lockfree, 226
start, timer::cpu_timer, 187
starts_with, algorithm, 25
state_, msm::front::euml, 345
state_machine, msm::back, 340
static_vector, container, 81
static_visitor, Boost.Variant, 94
status, filesystem, 165
status, mpi, 229
steady_clock, chrono, 183
steady_timer, asio, 132
stem, filesystem::path, 164
stop, timer::cpu_timer, 187
store, atomic, 222
store, program_options, 300
stream, Boost.IOStreams, 155
stream, iostreams, 156

372

INDEX INDEX

stream, log::expressions, 292
stream_descriptor, asio::posix, 142
string, filesystem::path, 162
string, interprocess, 148
String_, msm::front::euml, 345
string_generator, uuids, 323
string_ref, Boost.Utility, 352
style, program_options::command_line_parser, 303
sub_match, Boost.Regex, 30
sub_range, Boost.Range, 114
swap, Boost.Swap, 355
swap, uuids::uuid, 323
symbol_format, chrono, 185
symlink_status, filesystem, 165
synchronous_sink, log::sinks, 296
system, timer::times, 187
system::errc::make_error_code, 264
system::error_category, 264
system::error_category::message, 265
system::error_category::name, 265
system::error_code, 264
system::error_code::category, 264
system::error_code::default_error_condition, 266
system::error_code::value, 264
system::error_condition, 266
system::error_condition::category, 266
system::error_condition::value, 266
system::generic_category, 265
system::system_category, 265
system::system_error, 266
system_category, system, 265
system_clock, chrono, 182
system_error, system, 266

T
tag, Boost.Exception, 269
tag, Boost.Flyweight, 329
tag, Boost.Graph, 121
tag, Boost.MPI, 229
tag, Boost.Pool, 16
target, Boost.Graph, 119
task_io_service, asio::detail, 141
test, mpi::request, 231
test_all, mpi, 232
test_any, mpi, 232
test_some, mpi, 232
text_iarchive, archive, 308
text_multifile_backend, log::sinks, 296
text_oarchive, archive, 307
text_ostream_backend, log::sinks, 289
this_, Boost.ScopeExit, 12
this_thread::disable_interruption, 209
this_thread::get_id, 210
this_thread::sleep_for, 207
thread local storage, Boost.Thread, 215
thread, Boost.Thread, 206
thread::attributes, 209
thread::attributes::set_stack_size, 209
thread::detach, 207

thread::hardware_concurrency, 210
thread::interrupt, 207
thread::join, 206
thread_clock, chrono, 183
thread_group, Boost.Thread, 210
thread_group::join_all, 210
thread_interrupted, Boost.Thread, 207
thread_specific_ptr, Boost.Thread, 216
thread_specific_ptr::get, 216
thread_specific_ptr::operator*, 216
thread_specific_ptr::operator->, 216
thread_specific_ptr::reset, 216
tie, Boost.Tuple, 89
tier, Boost.Tuple, 89
time_duration, posix_time, 177
time_facet, date_time, 180
time_fmt, chrono, 185
time_input_facet, date_time, 181
time_iterator, posix_time, 178
time_of_day, posix_time::ptime, 176
time_period, posix_time, 178
time_point, chrono, 184
time_point_cast, chrono, 184
time_zone, local_time, 179
time_zone_ptr, local_time, 179
timed_lock, interprocess::interprocess_mutex, 150
timed_lock, interprocess::named_mutex, 150
timed_mutex, Boost.Thread, 212
timed_mutex::try_lock_for, 212
timer::auto_cpu_timer, 188
timer::cpu_timer, 186
timer::cpu_timer::elapsed, 187
timer::cpu_timer::format, 186
timer::cpu_timer::resume, 187
timer::cpu_timer::start, 187
timer::cpu_timer::stop, 187
timer::times, 187
timer::times::clear, 187
timer::times::system, 187
timer::times::user, 187
timer::times::wall, 187
times, timer, 187
TLS, see thread local storage, Boost.Thread
to_adapter, Boost.Assign, 354
to_lower, algorithm, 21
to_lower_copy, algorithm, 21
to_string, uuids, 324
to_time_t, chrono::system_clock, 183
to_upper, algorithm, 21
to_upper_copy, algorithm, 21
to_wstring, uuids, 324
tokenize, adaptors, 112
tokenizer, Boost.Tokenizer, 37
tokenizer::begin, 37
tokenizer::end, 37
top, heap::binomial_heap, 71
total_seconds, posix_time::time_duration, 177
track, signals2::signal::slot_type, 336
track_foreign, signals2::signal::slot_type, 336

373

INDEX INDEX

transition table, Boost.MetaStateMachine, 340
translators, Boost.PropertyTree, 98
tribool, logic, 102
trim_copy, algorithm, 24
trim_copy_if, algorithm, 24
trim_left_copy, algorithm, 24
trim_left_copy_if, algorithm, 24
trim_right_copy, algorithm, 24
trim_right_copy_if, algorithm, 24
true_type, Boost.TypeTraits, 241
truncate, interprocess::shared_memory_object, 144
try_lock, interprocess::interprocess_mutex, 150
try_lock, interprocess::named_mutex, 150
try_lock, mutex, 212
try_lock_for, timed_mutex, 212
try_lock_for, unique_lock, 211
try_to_lock, Boost.Thread, 211
tuple, Boost.Tuple, 87
tuple, fusion, 244
tuple::get, 88
tuple_list_of, assign, 353
type, any, 92
type, signals2::signal_type, 338

U
uint64_t, Boost.Integer, 275
UINT8_C, Boost.Integer, 276
uint_fast16_t, Boost.Integer, 275
uint_least32_t, Boost.Integer, 275
uintmax_t, Boost.Integer, 276
unblock, signals2::shared_connection_block, 334
unconstrained_set_of, bimaps, 61
undirectedS, Boost.Graph, 118
unhex, algorithm, 109
uniform_int_distribution, random, 284
unique_lock, Boost.Thread, 211
unique_lock::owns_lock, 211
unique_lock::release, 211
unique_lock::try_lock_for, 211
universal_day, gregorian::day_clock, 173
universal_time, posix_time::second_clock, 177
unlock, interprocess::named_mutex, 150
unlock, mutex, 210
unordered_map, Boost.Unordered, 64
unordered_multimap, Boost.Unordered, 64
unordered_multiset, Boost.Unordered, 64
unordered_multiset_of, bimaps, 61
unordered_set Boost.Unordered, 64
unordered_set, intrusive, 76
unordered_set_of, bimaps, 61
update, heap::binomial_heap, 71
upper_bound, multi_index::ordered_non_unique, 57
use_service, asio, 141
user space, Boost.Chrono, 183
user space, Boost.Timer, 186
user, timer::times, 187
utc, chrono::timezone, 185
UUID, Boost.Uuid, 322
uuid, uuids, 322

uuids::nil_generator, 323
uuids::random_generator, 322
uuids::string_generator, 323
uuids::to_string, 324
uuids::to_wstring, 324
uuids::uuid, 322
uuids::uuid::begin, 323
uuids::uuid::end, 323
uuids::uuid::is_nil, 323
uuids::uuid::size, 323
uuids::uuid::swap, 323
uuids::uuid::variant, 323
uuids::uuid::version, 323

V
val, phoenix, 193
value, program_options, 300
value, program_options::variable_value, 301
value, system::error_code, 264
value, system::error_condition, 266
value_semantic, program_options, 300
value_type, parameter, 258
values, adaptors, 112
variable_value, program_options, 301
variables_map, program_options, 300
variance, accumulators::tag, 278
variant, Boost.Variant, 93
variant, uuids::uuid, 323
vecS, Boost.Graph, 118
vector, fusion, 246
vector, interprocess, 148
vector_of, bimaps, 61
version, uuids::uuid, 323
vertex_descriptor, adjacency_list, 116
vertex_iterator, adjacency_list, 116
vertices, Boost.Graph, 116
view, Boost.Fusion, 245
view, Boost.MultiArray, 78
visit, log, 291
visitor, Boost.Graph, 121
void_, parameter, 259

W
w32_regex_traits, Boost.Regex, 33
wait, asio::steady_timer, 133
wait, condition_variable_any, 214
wait, interprocess::named_condition, 151
wait_all, mpi, 232
wait_any, mpi, 232
wait_some, mpi, 232
wall, timer::times, 187
wcregex, xpressive, 35
weak_ptr, Boost.SmartPointers, 7
weak_ptr::lock, 7
week_iterator, gregorian, 175
weeks, gregorian, 174
weight_map, Boost.Graph, 126
win_iocp_io_service, asio::detail, 141
windows_shared_memory, interprocess, 145

374

INDEX INDEX

word, spirit::qi, 44
write_info, property_tree::info_parser, 100
write_ini, property_tree::ini_parser, 100
write_json, property_tree::json_parser, 99
write_xml, property_tree::xml_parser, 100
wsregex, xpressive, 35
wstring, filesystem::path, 162

X
xpressive::_, 36
xpressive::_s, 35
xpressive::_w, 35
xpressive::cregex, 35
xpressive::ref, 36
xpressive::regex_iterator, 36
xpressive::regex_match, 34
xpressive::regex_replace, 34
xpressive::regex_search, 34
xpressive::regex_token_iterator, 36
xpressive::sregex, 34
xpressive::sregex::compile, 35
xpressive::wcregex, 35
xpressive::wsregex, 35

Y
year, gregorian::date, 172
year_iterator, gregorian, 175
years, gregorian, 174

Z
zero_tokens, program_options::value_semantic, 303
zlib_compressor, iostreams, 160
zlib_decompressor, iostreams, 160
ZLIB_LIBPATH, Boost.IOStreams, 160
ZLIB_SOURCE, Boost.IOStreams, 160

375

	I RAII and Memory Management
	Boost.SmartPointers
	Boost.PointerContainer
	Boost.ScopeExit
	Boost.Pool

	II String Handling
	Boost.StringAlgorithms
	Boost.LexicalCast
	Boost.Format
	Boost.Regex
	Boost.Xpressive
	Boost.Tokenizer
	Boost.Spirit

	III Containers
	Boost.MultiIndex
	Boost.Bimap
	Boost.Array
	Boost.Unordered
	Boost.CircularBuffer
	Boost.Heap
	Boost.Intrusive
	Boost.MultiArray
	Boost.Container

	IV Data Structures
	Boost.Optional
	Boost.Tuple
	Boost.Any
	Boost.Variant
	Boost.PropertyTree
	Boost.DynamicBitset
	Boost.Tribool
	Boost.CompressedPair

	V Algorithms
	Boost.Algorithm
	Boost.Range
	Boost.Graph

	VI Communication
	Boost.Asio
	Boost.Interprocess

	VII Streams and Files
	Boost.IOStreams
	Boost.Filesystem

	VIII Time
	Boost.DateTime
	Boost.Chrono
	Boost.Timer

	IX Functional Programming
	Boost.Phoenix
	Boost.Function
	Boost.Bind
	Boost.Ref
	Boost.Lambda

	X Parallel Programming
	Boost.Thread
	Boost.Atomic
	Boost.Lockfree
	Boost.MPI

	XI Generic Programming
	Boost.TypeTraits
	Boost.EnableIf
	Boost.Fusion

	XII Language Extensions
	Boost.Coroutine
	Boost.Foreach
	Boost.Parameter
	Boost.Conversion

	XIII Error Handling
	Boost.System
	Boost.Exception

	XIV Number Handling
	Boost.Integer
	Boost.Accumulators
	Boost.MinMax
	Boost.Random
	Boost.NumericConversion

	XV Application Libraries
	Boost.Log
	Boost.ProgramOptions
	Boost.Serialization
	Boost.Uuid

	XVI Design Patterns
	Boost.Flyweight
	Boost.Signals2
	Boost.MetaStateMachine

	XVII Other Libraries
	Boost.Utility
	Boost.Assign
	Boost.Swap
	Boost.Operators

	Index

